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Abstract

Over the past few decades, wildfires have been steadily increasing in number and severity, with over
52,000 fires in 2018 alone [1]. We use several different models to predict wildfire burn area, based
on data from 1.88 million historic fires from throughout the United States and during the period of
1992-2015. We investigate using linear regression, a neural network, and a support vector machine
(SVM), and evaluate our models’ performances with mean absolute error (MAE) and mean absolute
percent error (MAPE). Though challenged by a huge imbalance in fire sizes, our best model, an SVM,
was able to predict fire size on our test set with mean absolute percent error of 41%.

1 Introduction

1.1 Motivation

In recent years wildfires have destroyed entire communities and damaged billions of dollars worth of property. The
unpredictability of fire sizes makes it especially difficult for fire departments to effectively allocate the appropriate
resources to mitigate damage, so a reliable model predicting forest fire burn size is a necessity for disaster management.
We have developed a model that uses historical fire data and some weather parameters to predict how large a fire would
grow from numerical starting parameters. The input to our algorithm are numerical features such as date, latitude,
longitude, and the output is the final fire area in hectares.

1.2 Related Work

Radke et al (2019) built a convolutional neural network (CNN) to predict the area the current fire is expected to burn in
the next 24 hours [2]. The CNN was trained on location specific input which was heavily restricted by the small size of
the dataset, so as a result they used a number of data augmentation techniques.

Tehrany (2019) produced a fire susceptibility heatmap of areas in Vietnam using historical fire data, climatic and
topographic data, and distance to residential areas [3]. The study ultimately used a LogitBoost ensemble-based decision
tree (LEDT) model but also applied support vector machine (SVM), random forest (RF),and Kernel logistic regression
(KLR) models.

Castelli et al. (2015) used geographical and meteorological conditions to predict fire burn area [4]. The meteorological
data included traditional climatic data such as humidity, wind speed and temperature and indexes such as fine Fuel
Moisture Code (FFMC), Duff Moisture Code (DMC), Drought Code (DC), and Initial Spread Index (ISI). In this study
a number of machine learning techniques were applied and compared including Naïve Bias, Decision Trees, Support
Vector Machine, and Random forest.

Research groups from previous iterations of CS229 have also made contributions in this area. [5] used a collection
of geospatial data from a spectroradiometer aboard NASA’s Terra/Aqua satellites and land-based weather stations to
predict the fire-risk at a particular location based on the meteorological conditions at that location up to three months
prior. All three methods explored logistic regression, boosted trees, and multilayer perceptron and yielded similar
results with about 75% accuracy in fire prediction. [6] predicted the area consumed by fires in Montesinho natural park
in Portugal based on weather and fire data collected there over three years from Jan 2000 to Dec 2003, but experienced
a lot of difficulty.
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2 Datasets

We predict fire sizes on two main datasets: the Kaggle Wildfire dataset and the UCI dataset.

2.1 Kaggle Wildfire Dataset

The Kaggle dataset is a collection of 1.88 million wildfires that occurred throughout the entire US during the period
1992-2015. Each fire is reported with its burn area in hectares and many characterizing codes (no weather features),
of which we chose 6 numerical ones: the year, date fire started (continuous date), discovery day of the year (1-365),
fire cause code (1-13) specifying what started the fire, latitude, and longitude. The distribution of fire sizes is given in
Figure 1, where its clear that although fire sizes range from 0.0001ha ( 1 square meter) to 600,000 ha (2300 mi2), the
majority (by several orders of magnitude) of fires in the dataset are about 10 ha in size.

Figure 1: (Left) The Kaggle fire sizes distribution (log-log scale) indicates that fires are historically very small with
fewer major ones. (Middle) Kaggle dataset after balancing through randomly removing fires with over-represented
sizes. (Right) The UCI dataset has fewer fires, and a narrower distribution of sizes.

As a result of the large imbalance in fire sizes, we also trained on a version of our Kaggle dataset in which we balanced
the fire sizes more evenly by undersampling: randomly removing over represented fire sizes. To do this, we split the fire
sizes into order of magnitude bins and randomly sampled 4000 fires from each bin. Although the balanced distribution
is more flat, as in Figure 1, it has significantly fewer examples, only 33,000 in the training set instead of > 1:7 million
fires. We continued to test on the original distribution of fires.

2.2 UCI Dataset

Our second dataset, from the UCI machine learning repository is a collection of 512 fires from a large national park in
northern Portugal. Unlike the Kaggle dataset, this one provides weather features associated with each fire. We used
most of the provided features, which included an x and y location within the national park, month, day of the week, Fine
Fuel Moisture Code (FFMC), Duff Moisture Code (DMC), Drought Code (DC), Initial Spread Index (ISI), temperature
(Celsius), relative humidity, wind, and rain, to predict the burn area.

We randomly split the massive Kaggle dataset into 96% train, 2% validation and 2% test and split the smaller UCI
dataset into 60% train, 20% val and 20% test.

2.3 Feature Analysis

Based on our literature review we assumed that some features such as wind, temperature and humidity would be highly
correlated with fire size, but given an initial exploration of the data it was clear that even these highest correlated
features of the dataset were still only weakly correlated. As shown in figure 2 wind has little to no correlation to fire
size in the UCI dataset. Figure 2 also shows the concentration of massive fires around summer time compared to more
uniform distribution of smaller fires throughout the year.

To quantify the correlation between the dataset features we produced correlation matrices for both datasets. From
figure 3 we can see that all the features in UCI dataset are poor indicators of fire size with the highest correlation
magnitude, 0.076 attributed to relative humidity (RH). The correlation matrix of the Kaggle dataset has fewer features
and no weather features. All mutual features of both datasets have smaller correlation magnitudes in the Kaggle dataset
compared to the UCI dataset. This makes it very difficult to predict fire size well and also demonstrates the importance
of weather features to predict fire size which have a relatively high correlation to fire size compared to the Kaggle
dataset.

We applied Principal Component Analysis (PCA) to further understand which features explain the variance in the
datasets and which are redundant. Figure 4 confirmed that weather data is essential as the weather features are heavily
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Figure 2: (Left) Most of the really large fires in the Kaggle data happen during the peak of summer, but small fires are
well distributed. (Right) Windspeed (km/h) is not well correlated with Fire size.

Figure 3: Feature Correlations with Fire Size. (Left) Kaggle dataset, (Right) UCI dataset

weighted in the first component representing the UCI dataset. Interestingly relative humidity and wind do not represent
as much of the variance in the data as initially thought and are only included with a large weighting in the third and
fourth components respectively.

3 Models

3.1 Baseline Linear Regression

As an initial baseline model we applied a linear regression model to both datasets.

3.2 SVM

We also implemented a number of SVMs by experimenting with weighted class balancing and comparing a number of
various kernels and orders of polynomials; such as linear, sigmoid, polynomial and radial basis function. Of the kernels,
the radial basis function was the best predictor.

3.3 Neural Network

We next designed and tuned two separate neural networks for each dataset. For the Kaggle dataset we designed a
simple 10 layer network to predict with the same parameters and train/test split. The layers were fully connected
with between 32-256 nodes with dropout of 0.2 on each node and Relu activation on all nodes except the output node
which has linear activation. The model has ∼ 150; 000 trainable parameters and is significantly more flexible than the
linear regression baseline. We used an Adam optimizer, trained over 10 epochs, and based our loss function on the
mean-absolute-percent-error (which worked better than mean absolute error or mean squared error due to the large
variance in fire sizes).

For the UCI dataset we designed a seven layer neural network, consisting of six hidden layers with 1500 neurons in each
layer. We tuned the number of hidden layers used and the number of neurons in each layer using a simple grid search.
Again we used the Adam optimizer, but instead opted to use a squared hinge loss as the network was not learning using
the MAE score.
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