
StockAgent: Application of RL from LunarLander to stock price
prediction

Caitlin Stanton1 and Beite Zhu2

Abstract— This work implements a neural network to run
the deep Q learning algorithm on the Lunar Lander arcade
game (as in figure I), and then adapts this model to instead
run on stock data. Our agent learns—on stock data from
tech companies such as Google, Apple, and Facebook—when it
should buy or sell a stock, given features related to the recent
stock price history. Furthermore, our model allows the agent
to opt to buy and sell smaller amounts of the stock instead of
larger amounts (what we refer to as “soft” buying/selling and
“hard” buying/selling, respectively), which increases the nuance
and complexity of our model’s decision-making.

I. INTRODUCTION
Reinforcement learning has been at the core of many of the

most exciting recent developments in AI. For example, while
computers have been relatively successful at playing chess
for many years–notably, the computer Deep Blue was able
to defeat the reigning world chess champion Garry Kasparov
in 1996–the game of Go was considered much harder; it
wasn’t until reinforcement learning techniques were used in
2015 that the program AlphaGo was finally able to beat a
professional human Go player.

Here we use deep Q learning to train an agent to learn
the arcade game Lunar Lander, a game where the goal is
to steer a landing module and successfully land it on the
surface of the moon. After understanding how to apply this
model to Lunar Lander, we then use this same technique
to a less conventional application of reinforcement learning
techniques: investing in the stock market. We rephrase stock
market investment as a “game” where states involve data
such as recent change and volatility of a stock, and discretize
the possible investment amounts in order to create a finite
set of actions at each state. In this way, we apply our deep
Q learning algorithm from our Lunar Lander model to the
problem of stock market prediction.

II. RELATED WORK
Reinforcement learning techniques have already been ap-

plied to the Lunar Lander game. Garza implements a Policy
Gradient Descent model in [1]. For this method, as developed
in [2], the goal is to learn an ideal policy by training a
neural network whose input is a state, and whose output
is a probability distribution on the possible actions. For our
model, we abandoned Policy Gradient Descent in favor of
trying deep Q learning.

Predicting stock prices based on past stock data is ap-
pealing for obvious reasons. There is even a competition

*This work was not supported by any organization
1Department of Mathematics, Stanford University, SUNetID: stanton1
2Department of Mathematics, Stanford University, SUNetID: jupiterz

Fig. I. Lunar Lander environment.

released on Kaggle (starting September 25, 2018 and ending
January 8, 2019) by the company Two Sigma related to stock
prediction [3]. The goal of this competition is to predict
stock prices based on both previous stock data (including
market information such as opening price, closing price,
trading volume, etc), and news data (including news articles
and alerts published about assets, such as article details,
sentiment, and other commentary). Unlike our project, the
goal for this competition is not to tell an agent when to buy
or sell (and how much to buy or sell), but rather to predict
whether stock prices will go up or down.

This seems to be a common feature for current applications
of machine learning to the stock market: most models wish
to predict stock prices, and not directly tell us an investment
strategy. For instance, in [4], Jae Won Lee uses reinforcement
learning (specifically, TD algorithms) to model stock price
behaviour. When referencing the relationship between his
research and the problem of how to invest, he writes:
“Though the ultimate purpose of reinforcement learning is to
get an optimal policy, that is to resolve control problem, the
use of TD algorithm in this paper is confined to the prediction
problem because the policy in stock market is assumed to be
determined by each investor and to be beyond the scope of
learning here.” Some sources have, however, opted to train
an agent to actually develop an investment strategy. In [5],
they develop a reinforcement learning algorithm to train an
agent to play the stock market. However, unlike our model,
their model only allows for three actions: sell, hold, or buy.
This eliminates some of the nuance from our model, where
our agent has some control over the quantity that gets bought
or sold, and not just the fact of buying or selling.

Fig. II. Processed stock data for Apple.

III. DATA
A. Lunar Lander Environment

The Lunar Lander environment was provided by OpenAI
gym https://gym.openai.com/ [6] . There was no
additional processing needed. The provided states for the
simulation consist of length-8 vectors, containing the fol-
lowing information about the lunar landing module: position
in space, orientation in space, velocity, angular velocity,
whether the right foot is in contact with the ground, and
whether the left foot is in contact with the ground.

There are four actions allowed at any given point in
the game: firing the main engine, firing the right engine,
firing the left engine, or doing nothing. There are rewards
for landing with feet down, and penalties for wasting time,
landing far away from the pad, and wasting fuel.

B. Stock Dataset
We used IEXs API to download 5 years worth of stock

data from Apple and Google. This included the daily price
(opening, closing, high and low) of the stock. To simplify
our model, we just considered the closing price of the stock
on any given day. We also wanted to predict stock prices on
a slightly longer time scale, so we restricted to looking at
stock prices each week (choosing the closing price on the
previous Friday as the stock’s price at the beginning of the
following week).

We did, however, save some data about how the stock
changed in the lead-up to a given week. We added a feature
corresponding to the volatility of the stock price in the pre-
vious three weeks. More precisely, for week n, the volatility
feature for that week is equal to the standard deviation of the
daily stock prices from weeks n−3 through n−1, divided by
the mean of the stock price during this range. Normalizing
by the mean price ensures that this feature is independent of
scaling the stock price (as this shouldn’t impact how much
we choose to invest).

We also added three features, which we call delta1, delta2,
and delta3, that correspond to the weekly net change in stock
price from the three preceding weeks. So in total, our data
(each row corresponding to one week in our 5 year span)
contains 7 features: the volatility of the stock, delta1, delta2,
delta3, the price of that stock at the beginning of the week
(i.e. the closing cost from the previous Friday), our current
cash on hand, and the value of the stock we own. Our initial
state consists of our first line of processed stock data, and
the fact that we have $0 in cash and $0 invested into the
stock.

To make our situation similar to the finite-action state from
Lunar Lander, we imposed only a finite number of actions
that our agent can take when playing the stock market.
Specifically, at any given moment in time, we are allowed to
do a “hard” buy or sell, a “soft” buy or sell, or do nothing.
Our default values of hard and soft were $100 and $10
respectively, though we did test different “soft” values later
while keeping “hard” fixed (see section V-C for details). By
letting “hard” and “soft” correspond to the amount we invest
in the stock market on a given week and not to the number
of shares, we ensure that our model is independent of the
average price of the stock; our model just cares about how
the stock price fluctuates from week to week, and not the
absolute price of the stock. Notice also that for simplicity of
our model, we allow negative cash and negative stock value
in our portfolio. Some of this even makes sense (for instance,
“negative cash” could correspond to taking out a loan so as
to invest more in the stock market).

Our reward function is just the change in portfolio value
each week.

IV. METHODS

A. Deep Q Learning

For both Lunar Lander and the stock market, we used deep
Q learning to train our agent. The goal here is to learn the Q
function, which gives our total maximum expected reward if
we start at state s and take action a. Thus Q should satisfy
the optimal Bellman equation:

Q(s,a) = R(s,a)+ γ ·max
a′∈A

Q(s′,a′),

where s′ is the state after taking action a from s, and γ is
the discount factor (intuitively, it parametrizes how much we
value future versus current reward).

For deep Q learning, we use a neural network to learn
the Q function. Specifically, our network takes in a state
s, and outputs a vector of length equal to the number of
actions, where each entry corresponds to Q(s,a) for that
particular action. Since Q corresponds to net reward, in order
to implement a trained network, at state s we would take
action a which corresponds to the largest entry in our output
from the neural network.

B. Loss Function

In order to train our model, we need a loss function. Given
a state s and an action a, our loss is just the difference
between what our model predicts, and what the optimal

https://gym.openai.com/

Bellman equation should give. In other words, if we let Q̂
be our target function generated via

Q̂(s,a) = R(s,a)+ γ max
a′∈A

Q(s,a),

our loss is then given by:

Loss = ‖Q− Q̂‖2.

Input State

Q-value of action 1

Q-value of action 2

Q-value of action 3

Q-value of action 4

Q-value of action 5

Action

Fig. III. Graph of our model, StockAgentDeepQNetwork.

V. DISCUSSION

A. Training

For the Lunar Lander model, we used a fully-connected
neural network of shape (input,8,8,4). For stock predic-
tion, we used a fully-connected neural network of shape
(input,10,10,5). 500 epochs could be finished on an Apple
laptop within a few minutes.

B. Result

Our base line model as in figure III, StockAgentDeep-
QNetwork, or SADQN, involves setting “hard” and “soft”
to 100 and 10 dollars per transaction, respectively. We set
the exploration rate set equal to 0.05. This converges after
around 200 epochs. One can see the plot of cost and reward
in figure IV.

Fig. IV. Plots of reward and cost against training steps.The first row are
the cost and reward of AAPL, and second row are the cost and reward of
GOOG. The plummets and spikes are due to the random explorations.

Our model can return 500-2000 dollars of profit in the
course of 5 years on a strong stock. The majority of its
actions consist of soft buys, and the agent will go into
negative cash budget, but with a sizable stock value thus
resulting in a positive portfolio.

C. Hyper-parameter Choices/ Experiments

All other experiments are conducted around the above base
model. Here is what we have tried:

i. Soft buy/sell tweaking: As we listed out the actions
from our base model after training, we realized that our
model has a very strong preference for “soft” actions.
In other words, the agent is risk-averse. To experiment
with this, we have tried various scalings of soft action
values. We fix the hard buy/sell value at 100 and alter
the soft buy/sell values, as seen in in the following table
in figure V. One can see that the final portfolio value
is very much positively proportional to the soft action
scale.

Network GOOG AAPL
Soft=1 66.61 235.42
Soft=5 448.15 342.22
Soft=10 50.77 943.07
Soft=20 120.14 19.247
Soft=50 5716.30 8566.56

Fig. V. Final portfolio value under different soft buy/sell value.

ii. Less competitive stock testing: When training on
Apple and Google stock, we noticed that the agent
chose “soft” buy the vast majority of the time. Part
of the issue here might be that Google and Apple are
relatively stable stocks, and have an upward long-term
trend in price. In order to really exhibit the predictive
capabilities of our model, it made sense to apply it to
stocks that are more volatile, and which maybe don’t
have such an obvious long-term trend.
Staying in the tech realm, three additional stocks we
looked at were Facebook, Twitter, and NVIDIA. Using
just our baseline model (with 500 epochs, since more
volatile stocks take longer to converge), this is how
we performed on each of these stocks, as compared to
always performing “soft” buy as our action:

MODEL FB TWTR NVDA
Baseline 1435.60 205.02 1761.86

“Soft” buy 1142.12 235.96 6046.56

Fig. VI. Final portfolio value of Facebook, Twitter, and NVIDIA.

We can see that our model performs better than naively
performing “soft” buy for Facebook, performs similarly
for Twitter, and performs worse for NVIDIA. We don’t
currently know what is causing these discrepancies, but
we think it’s likely that our model is too risk-averse.
For example for NVIDIA, a highly volatile stock, our
model is usually doing nothing, or performing a “soft”
buy.

iii. Exploration rate tweaking: Having random explo-
ration is important in learning a game like Lunar Lander
so that the agent can experience different states of the
game and handle various situations. In the Lunar Lander
game, our agent in fact grows more ‘curious’ and

explores more as time goes on. However, we felt this is
unnecessary in a stock prediction situation, and thus we
have experimented with various fixed exploration rates.
The result can be seen in figure VII. One can see that
unlike the Box2D games, having a reasonable explo-
ration rate like 5 percent actually negatively influences
the training. This is probably due to the fact that the
process of stock prediction is much more formulated
and deterministic. Unlike other games where various
actions could lead to different states that could still
achieve optimal outcome, if the price is going up, a
hard buy is just the absolute best action. Thus, for the
best training outcome, one should stick to a minimal
exploration rate.

Exploration rate GOOG AAPL
ε = 0 249.63 1905.90

ε = 0.01 458.92 1713.68
ε = 0.05 592.98 476.66
ε = 0.1 116.36 264.31
ε = 0.2 -30.76 129.55

Fig. VII. Final portfolio value under different exploration rates.

iv. SADQNbold, the risk rewarding experiment, and
γ tuning: As we observed, our agent is highly risk-
averse. Even though it can forecast stock behaviour in
the long run, it will still choose the soft action instead
of the hard one. To encourage our agent to take risks,
we have implemented a new model called SADQNbold.
SADQNbold has the extra two parameters:

volatility_weight
exploration_hard_chance.

The volatility weight is a variable ν that currently
associates reward with volatility using the formula

Reward = Profit∗ (1+ν)∗volatility,

thus making a riskier profit more rewarding. The ex-
ploration hard chance, or EHC, puts a different weight
on hard actions when sampling for an action in the
exploration part of training. With a bigger probability
of taking hard actions, the agent will see more of
the benefits of hard actions. (Note that when ν = 0
and EHC = 0.2 we have the baseline model.) Another
related parameter is γ , the discount factor in the Bellman
equation for generating our Q̂. Making this number
closer to 0 will make the agent more short-sighted thus
taking bolder actions. In experiments, we found that
lowering γ or increasing ν and EHC will indeed encour-
age more hard actions. On the other hand, it makes the
agent highly unstable with respect to different stocks.
More volatile stocks could lead to an unprofitable agent.
In the experiment as in figure VIII on the stock of
AAPL, the actions consist primarily of hard buy and
sell. The final portfolio value is around 12,000 dollars.

Fig. VIII. Plots of reward against training steps using SADQNbold with
ν = 1, γ = 0.8 and EHC = 0.25.

VI. CONCLUSION AND FUTURE DIRECTIONS

Conclusion By drawing connections between the game of
Lunar Lander and stock investment, we have established a
baseline structure of a stock predicting agent using the model
of deep Q learning. The model is demonstrated to be rather
risk averse but can master long term investment strategy with
reasonably volatile stocks.

Future directions, shot term vs. long term: In our data
split there is a mismatch, as we are training on approximately
5 years of data and trying to test the agent on 10 weeks of
data. However, what the agent picks up from the base model
is a long term strategy and is not optimal on a 10 week
basis. Thus we tried to implement StockAgentDQNShort.
This agent, instead of training the whole 5 year period, trains
on several episodes of 10 consecutive weeks (or whatever the
test data length) randomly selected from the training data.
But as one can observe from figure IX, the randomness we

Fig. IX. Plots of reward and cost against training steps. The stock is based
on AAPL

introduced is giving the model a hard time converging, and
thus the reward graph is highly fluctuating. One explanation
why this approach failed is that, though we match the data
with train and test, this is not the traditional way humans
predict stock. The historical data is always there for reference
whenever one makes a prediction in real life, so somehow
restricting our model to training on 10 weeks of data is not
a realistic solution to this data mismatch problem.

One possible solution is to strengthen the model so that
it includes more than 3 weeks of data in the past, thus
resulting a network that has more input features and thus
more complexity in general. Another solution, which is
closer to human prediction, is to include real world events to

help short term prediction [3][7]. Indeed, news events like
the release of new products or the new employment of a
CEO can hugely influence stock price in a short span of
time. The significance of such events usually outweighs past
statistical information of the stock market, and thus should
be considered in the model.

CODE

The code for this project is available at https://
github.com/zhubeite/CS-229-RL-project.

ACKNOWLEDGMENT

We would like to thank our mentor, Mario Srouji, for his
guidance throughout this project.

CONTRIBUTIONS

Caitlin: Contributed code for pre-processing data,
transition/reward functions, and downloading stock data;
contributed to write-up

Jupiter: Wrote TensorFlow code to train our neural net-
works, created overall code architecture, tested hyperparam-
eters, contributed to write-up

REFERENCES

[1] Gabriel Garza. Deep reinforcement learning - policy gradients - lunar
lander!, 2018. [Online; posted 17-January-2018].

[2] Jürgen Schmidhuber. Deep learning in neural networks: An overview.
Neural networks, 61:85–117, 2015.

[3] Two Sigma. Two sigma: Using news to predict stock movements, 2018.
[Online; posted 25-September-2018].

[4] Jae Won Lee. Stock price prediction using reinforcement learning.
In ISIE 2001. 2001 IEEE International Symposium on Industrial
Electronics Proceedings (Cat. No.01TH8570), volume 1, pages 690–
695 vol.1, June 2001.

[5] Zhuoran Xiong, Xiao-Yang Liu, Shan Zhong, Hongyang Yang, and
Anwar Walid. Practical deep reinforcement learning approach for stock
trading. CoRR, abs/1811.07522, 2018.

[6] Openai gym.
[7] Stefan Feuerriegel and Helmut Prendinger. News-based trading strate-

gies. 2018.
[8] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu,

Joel Veness, Marc G. Bellemare, Alex Graves, Martin Riedmiller,
Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie,
Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran,
Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control
through deep reinforcement learning. Nature, 518:529 EP –, 02 2015.

[9] Fuli Feng, Huimin Chen, Xiangnan He, Ji Ding, Maosong Sun, and
Tat-Seng Chua. Improving stock movement prediction with adversarial
training. arXiv preprint arXiv:1810.09936, 2018.

https://github.com/zhubeite/CS-229-RL-project
https://github.com/zhubeite/CS-229-RL-project

	INTRODUCTION
	RELATED WORK
	DATA
	Lunar Lander Environment
	Stock Dataset

	METHODS
	Deep Q Learning
	Loss Function

	Discussion
	Training
	Result
	Hyper-parameter Choices/ Experiments

	Conclusion and Future Directions
	References

