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Abstract—The objective of this project was to segment residen-
tial consumers based on their appliance-level power consumption
from smart meter data for demand response program targeting.
Consumers were segmented based on three characteristics of
power consumption: their availability (temporal use patterns),
variability, and flexibility (willingness to shift power consump-
tion). Four different unsupervised methods were used to segment
based on availability from empirical start time distributions of
different appliances: K-means clustering, hierarchical clustering,
Gaussian mixture models, and latent Dirichlet allocation. Hier-
archical clustering most consistently yielded clusters with high
load availability during specified hours. Consumer variability was
evaluated by clustering load profiles into load profile types and
calculating the entropy of the distribution of load profile types
assigned to each consumer. Finally, three supervised learning
methods were used to predict the responsiveness of consumer
power consumption to price based on household characteristics
and time-series features. Linear regression with recursive feature
selection resulted in the lowest prediction error on the test set.

Index Terms—Consumer segmentation, demand response, un-
supervised learning, clustering

I. INTRODUCTION

The increasing deployment of distributed energy resources
(e.g. solar, electric vehicles) in power distribution systems will
result in greater uncertainty in power demand. One method
to mitigate this uncertainty and maintain grid reliability is to
enable more control of demand-side resources through demand
response programs. Demand response (DR) is a reduction or
shift in power consumption relative to baseline behavior during
peak loads or high prices. While DR programs have histori-
cally focused on the industrial and commercial customers, res-
idential DR programs are expanding. These programs are run
by utility companies or third party aggregators and generally
focus on control of specific types of residential appliances,
such as air conditioners or pool pumps [1].

The effectiveness of a DR program depends on the power
consumption patterns of consumers and their responsiveness
to prices or incentives. Power consumption at the household
level is extremely volatile and can vary significantly from
one household to another, given heterogeneity in consumer
behavior and the stochastic nature of exogenous variables (e.g.
weather patterns). Direct targeting of consumers with behavior
patterns well suited for DR would be highly beneficial and cost
effective for utility companies.

II. RELATED WORK

Past research has focused on using smart meter data for
consumer segmentation to identify households with similar
power consumption patterns using unsupervised learning [2]–
[6]. An overview of clustering approaches and techniques is
provided in [4], and specific relevant studies are highlighted
below.

Kwac et al. utilized a combination of adaptive K-means and
hierarchical clustering to develop a load profile dictionary from
a dataset of 220,000 consumers in CA [2]. Quilumba et al.
generated clusters of load profiles using K-means clustering,
which they used to improve meter-level load forecasting algo-
rithms [6]. Similarly, Gajowniczek and Zabkowski clustered
appliance level activity patterns with hierarchical clustering
and used the results to improve load forecasting models [3].
Rhodes et al. analyzed the correlations between seasonal
load profiles obtained from K-means clustering and various
household characteristics using a probit regression model [5].
Other unsupervised methods that have been tested include
support vector clustering, self organizing maps, and fuzzy K-
means [6]. All of these studies except for [3] focused on
clustering the total load profile of each home, rather than
the appliance-level power consumption. However, most DR
programs focus on appliance-level control.

III. PROJECT OBJECTIVE

The objective of this project is to segment consumers based
on their appliance-level power consumption with respect to
three factors: consumer (1) availability, (2) variability, and
(3) flexibility. In contrast with previous studies, we focus
on appliance-level power consumption. Availability refers to
the tendency of a consumer group to consume power during
periods of peak system demand when a utility would be
most interested in curtailing power consumption. We evaluate
consumer availability using unsupervised learning to cluster
consumers into groups with similar temporal use patterns for
each appliance. Variability is associated with the consistency
of power consumption patterns. Consistent use patterns typi-
cally result in more accurate power demand forecasts, which
improve the effectiveness of a DR program. We evaluate
variability by using unsupervised learning to cluster load
profiles into discrete groups, and analyze the entropy of the
distribution of the load profile assignments for each consumer.
Flexibility refers to the willingness of a consumer to shift
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TABLE I: Dataset size for each appliance and the type of analysis applied to each
(V=variability, A=availability, F=flexibility).

Appliance Number of homes Analysis type
Air conditioner (A/C) 129 V

Refrigerator 103 V
Dishwasher 82 V,A

Clothes washer 80 V,A
Dryer 62 V,A

Electric vehicle (EV) 29 V,A
Water heater 13 V,A

Clothes washer + dryer heater 13 V,A
Pool pump 9 V

Total home consumption 132 V,F

power consumption from a peak load period to an off-peak
period. We use supervised learning to predict the responsive-
ness of consumers to changes in price based on household
characteristics and features extracted from power consumption
profiles.

IV. DATASET AND FEATURES

Appliance and meter-level real power consumption data was
obtained from the open-source Pecan Street Database [7]
for homes in Austin TX. Nine of the most common types
of appliances were analyzed, and are listed in Table I. Since
not all homes had the same appliances, the amount of data
obtained for each appliance type varied.

For the availability and variability analyses, twelve months
of minute-level data from 2014, 2015, and 2016 were used for
the training, validation, and tests sets, respectively. Availability
analysis was applied only to deferrable loads, which are appli-
ances that are user-initiated. The power consumption of these
appliances is primarily dependent on consumer use patterns.
We extracted the start times of each appliance use event from
the raw data using thresholding heuristics based on changes
in the moving average of power consumption. A multinomial
distribution of the start time over the hours of the day was
fit for each home and appliance using maximum likelihood
estimation with Laplace smoothing. Given an extracted set of
appliance start times S = {s1, . . . , sN}, the probability that
an appliance use event for house j occurs during hour h is
given by

P (j)(s = h) =

∑N
k=1 1{sk = h}+ 1

N + 24

where P (j)(s) ∈ R24.
We analyzed the variability of all nine appliance types

listed in Table I. The 1-minute power consumption data was
aggregated to hourly average values, resulting in 365 24-hr
profiles for each appliance and consumer. These profiles were
then used for consumer segmentation.

For the flexibility analysis, data was obtained from a critical
peak pricing study conducted in 2013 on participants in the
Pecan Street project [8]. These participants were subjected to
a higher electricity price during certain hours (16:00-19:00) on
12 peak pricing days during summer 2013. In the trial, peak
days occurred when the predicted maximum daily temperature
exceeded a certain threshold. Consumers were notified of
the peak pricing event the day before. For this project, we
utilized four months of meter-level power consumption data
from 32 homes that include all 12 peak pricing days. For

TABLE II: Features used for predicting consumer responsiveness to price.
Flexibility features Units
Home size ft2
Year built year
Number of stories -
Mean 6-hr energy consumption (24:00-6:00,6:00-
12:00,12:00-18:00,18:00-24:00)

kWh

Mean, 10%ile, and 90%ile of daily energy consumption above
baseload

kWh

Mean and variance of hourly power consumption kW
Mean, 10%ile, and 90%ile of maximum and minimum daily
energy consumption

kWh

Entropy of load profile (see Section V-B) -

each peak pricing day, we calculated the percent reduction in
energy consumption during the peak pricing window (16:00-
19:00) relative to the mean consumption during the same
hours over the previous 14 days. Models were trained to
predict the mean percent reduction in consumption over all
peak pricing days for each consumer, as a function of various
features including household characteristics and attributes of
the timeseries power consumption profile, as listed in Table
II. Several of these features were chosen based on analysis
from [9], which identified specific load profile features that are
most indicative of consumer participation rates and response.
Daily baseload consumption is defined as the minimum hourly
consumption level over the course of a day. The entropy of
the load profile of each consumer, which is defined in Section
V-B, was also used as a feature. While the availability and
variability analysis utilized appliance-level power consumption
data, we used the total power consumption of each home
to evaluate consumer flexibility. Out of the 32 homes in the
dataset, 20 homes were used for training, 6 homes were used
for validation, and 6 homes were used for testing.

V. METHODS

A. Availability

Four different unsupervised learning methods were utilized
for the availability analysis: K-Means clustering, hierarchical
clustering, latent Dirichlet allocation (LDA) and Gaussian
mixture models (GMM).

For K-means clustering, we ran the algorithm 10 times, each
time re-initializing the cluster centers, and chose the cluster
assignments with the lowest intra-cluster variation.

For hierarchical clustering, we used a symmetrized version
of the KL divergence, which is equal to twice the Jensen-
Shannon divergence, as a similarity measure between the start-
time probability distributions of consumer i and consumer j for
each appliance:

D(P (i)||P (j)) =
∑
s

P (i)(s)log

(
P (i)(s)

P (j)(s)

)
+
∑
s

P (j)(s)log

(
P (j)(s)

P (i)(s)

) (1)

Using Laplace smoothing in the parameter estimation of the
probability distributions ensured that P (j)(s) > 0 ∀s =
0, . . . , 23 such that Equation 1 is always defined. For hierarchi-
cal clustering, we used agglomerative methods with the Ward
variance minimization algorithm [10] for the cluster linkage
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method. Preliminary results indicated that Ward linkage yields
more uniform cluster sizes compared to other methods.

Latent Dirichlet Allocation (LDA) is a generative model
typically used in natural language processing that characterizes
word “topics” as latent variables [11]. We used LDA since the
multinomial distribution of appliance start time probabilities
lends itself well to being characterized as a topic modeling
type problem. In this application, a “topic” is distribution of
start time probabilities and the 24 start times are “words” in
a “dictionary”. The LDA model was trained by converting
the start time probability distributions back into a frequency
distribution to use as inputs.

The GMM was modeled as a mixture of 24-dimensional
multivariate Gaussians each with tied covariance matrices.
This was required since the 24 features are elements of a
discrete probability distribution and are thus not independent
of each other. The model was trained using expectation max-
imization.

Both probabilistic models were each run 10 times for 2-
14 clusters and the assignments with the lowest intra-cluster
variation as measured by symmetrized KL divergence were
selected for each of the analyzed cluster sizes.

All four unsupervised learning methods were implemented
using the Sci-kit Learn [12] and SciPy [13] Python packages.

Three different metrics were used to evaluate the perfor-
mance of each method. Suppose the training and validation set
both contain n consumers, and k clusters are obtained from
both sets such that cluster cT ∈ [0, . . . , k] from the training
set contains ncT consumers and cluster cD ∈ [0, . . . , k] from
the validation set contains ncD consumers. Suppose c̄(j) is the
cluster assignment associated with consumer j. We define the
availability of a cluster of appliances during hour h as the
mean power consumption during hour h for the entire cluster.
The increase in availability from consumer segmentation is
the maximum availability over all clusters divided by the
availability of all of the appliances in the entire dataset

Aτ =
maxcT

[
1

ncT
|τ |
∑
t∈τ
∑n
j p

(j)
t 1{c̄(j) = cT }

]
1
n|τ |

∑
t∈τ
∑n
j p

(j)
t

(2)

where τ is the set of all time indices associated with hour
h and p(j)t is the power consumption of consumer j at time t
in the test set. An effective consumer segmentation algorithm
should yield a large increase in availability.

The completeness score [14] is a metric generally used to
compare a set of cluster assignments to a set of ground truth
labels. For this project, we extended the completeness score
to the unsupervised case and used it to compare the similarity
of clusters obtained from the training and validation sets

CS =1− H(CT |CD)

H(CT )
(3)

H(CT |CD) =−
k∑

cT=1

k∑
cD=1

ncT ,cD
n

log

(
ncT ,cD
ncD

)
(4)

H(CT ) =−
k∑

cT=1

ncT
n
log
(ncT
n

)
(5)

where ncT ,cD is the number of consumers assigned to
cluster cT in the training set and cluster cD in the validation
set. This analysis assumes that consumer power consumption
patterns remain similar between the training, validation, and
test sets, such that a “perfect” clustering algorithm would
recover identical clusters.

Finally, we used the intra-cluster variation of the samples
as a measure of cluster quality. The KL-divergence as defined
in Equation 1 was used a distance measure between samples.
The elbow method [15] was used to select the optimal number
of clusters for each appliance.

B. Variability

The variability of consumer power consumption patterns
was also analyzed using unsupervised learning. First, K-means
clustering was used to cluster the 24-hour power consumption
profiles of all homes for each specific appliance into k load
shape types. This resulted in 365 load shape cluster assign-
ments for each home and appliance. The distribution over these
load shape types Q(j) ∈ Rk for each home and appliance over
the entire training set was calculated using Laplace smoothing.
The entropy of Q(j) gives a measure of the variability of
consumer use patterns:

S(Q(j)) = −
365∑
i=1

Q(j)(i)log(Q(j)(i)) (6)

C. Flexibility

Three methods were compared for predicting the respon-
siveness of the power consumption of each consumer to
changes in electricity price: linear regression with recursive
feature selection, K-nearest neighbors (KNN) regression, and
random forests with recursive feature selection. The tuning
parameters for each algorithm were selected to minimize the
mean squared error (MSE) in the validation set. Tuning pa-
rameters included the number of features for linear regression
and random forests, the number of neighbors for KNN, and the
number of estimators and the maximum tree depth for random
forests.

VI. RESULTS AND DISCUSSION

A. Availability

An example of the cluster assignments for the start time
distributions of clothes washers obtained with K-means clus-
tering for k=5 are shown in Figure 1. The cluster assignments
for all four algorithms are qualitatively similar, and effectively
segment households by their temporal use patterns. For exam-
ple, cluster 1 represents consumers with a higher probability
of using their clothes washer between 6:00-8:00 and 17:00-
19:00. By analyzing such plots, a DR provider would be able
to manually select clusters with temporal use patterns most
useful for DR program participation. For example, curtailing
the power consumption of consumers in cluster 4 could help
power system operators meet evening peak system demand.

As shown in Figure 2, availability generally improves as
the number of clusters increases. Results show that consumer
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Fig. 1: Cluster assignments for start time distributions of clothes washers for different
consumers, obtained with K-means clustering (k=5)

segmentation can result in a x2 increase in the availability of
residential loads to participate in DR. While the performance
of different algorithms generally depends on the number of
clusters, hierarchical clustering consistently results in good
performance, especially for large number of clusters. Results
also indicate that hierarchical clustering also results in clusters
with the most uniform cluster sizes compared with the other
algorithms. Additionally, use of KL-divergence as a distance
measure between probability distributions is more theoretically
justifiable than use of the Euclidean distance in K-means
clustering. The performance of the two probabilistic methods
may have been limited by the size of the dataset. This is
because GMM and LDA use EM-type training methods and
thus a dataset where the sample is more typical of the overall
population might be more effective. Furthermore, LDA is
typically used for natural language processing, where the
number of words in the dictionary is significantly larger than
the number of hours in a day and the frequency count of words
in a corpus is higher than appliance start times in a year.

The use of the elbow method (Figure 3) to find the most
appropriate cluster size was difficult due to the fact that there
were no clear points where the intra-cluster variation dropped
sharply. To aid in our selection of the optimal number of
clusters, we also considered silhouette scores, and for LDA,
perplexity scores. Though not presented for the sake of brevity,
these other evaluation metrics also agreed to a large extent
with the clusters found by the elbow method. The number of
clusters selected fell into 2 groups: 5 for EVs, dishwashers,
clothes washers, and clothes dryers; 3 for washer/dryers and
waterheaters.

The completeness scores in Figure 4 were calculated using
the selected cluster numbers. Hierarchical clustering had the
highest completeness scores for most of the appliances and
thus had the most consistent assignments between training and
validation sets. The probabilistic methods once again showed
poor performance. This was likely due to the same reasons
they showed poor performance on the availability metric.

Fig. 2: Increase in load availability from consumer segmentation for different
appliances and numbers of clusters

Fig. 3: Intra-cluster variation based on the KL divergence for each unsupervised
learning algorithm as a function of the number of clusters

Across all algorithms, completeness scores were higher for
appliances with smaller number of clusters. This suggests that
there is a trade-off between obtaining greater resolution in
consumer groups and having higher variance or over-fitting in
the clusters.

B. Variability

The distribution of the entropy of the load profiles of
different appliances are shown in Figure 5 for k=20 (number
of load profile types). The mean entropy of the load profiles
of deferrable appliances, such as clothes washers, dryers, and
dishwashers tend to be higher than that of other appliances.
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Fig. 4: Completeness score comparison clusters obtained from the training and validation sets for different algorithms and appliance types.

Fig. 5: Histogram of the entropy of load profiles for different consumers for each
appliance type

The power consumption profiles of these loads are primarily
dependent on occupant behavioral patterns, which can be
highly stochastic. In contrast, the mean entropy of the load
profiles of thermal loads such as air conditioners, refrigerators,
and waterheaters is much lower, but the variance of these dis-
tributions is larger. Targeting of consumers with comparatively
lower entropy values would be beneficial to utility companies
as their behavior is much more consistent on a day-to-day
basis.

Increasing the number of load profile types k increases the
entropy of the load profiles of all consumers and appliance
types. However, it generally does not significantly affect the
relative ordering of the mean load profile entropy of different
appliance types.

TABLE III: Mean squared errors (MSE) for predicting consumer responsiveness to
price.

Method Train MSE
(n=20)

Validation
MSE (n=6)

Test MSE
(n=6)

Linear regression 0.0200 0.0305 0.0404
K-Nearest Neighbors 0.0148 0.0589 0.0608
Random forests 1.6907 0.7048 0.3187

C. Flexibility

The training, validation, and test mean squared error (MSE)
for the three supervised learning algorithms are shown in Table
III. The optimal number of features from feature selection
was 10 for both linear regression and random forests. For
KNN, the optimal number of neighbors was 2 and for random
forests the optimal number of estimators was 10 and the
maximum depth was 100. Linear regression with recursive
feature selection resulted in the lowest test error, followed
closely by KNN regression. The three features with highest
importance from the recursive feature selection for linear
regression were the mean baseload power consumption, the
mean energy consumption above the baseload level, and the
mean hourly power consumption. Because of the small size
of the dataset (n=32), models with lower variance achieved

better performance. Random forests would likely have higher
performance with a larger dataset.

VII. CONCLUSIONS AND FUTURE WORK

In this project, we developed methods for segmenting
residential consumers based on their appliance-level power
consumption with respect to their availability, variability, and
flexibility. Results indicated that segmentation using unsuper-
vised learning methods can increase load availability for DR
programs by up to a factor of two. Hierarchical clustering
applied to the start time probability distributions of deferrable
appliances produced the most consistent performance. Results
indicated that cluster assignments can vary significantly from
one appliance to another and can differ from the cluster
assignments obtained by only analyzing the total power con-
sumption of each home. This highlights the importance of
performing consumer segmentation based on appliance-level
power consumption data. Power consumption variability was
assessed by calculating the entropy of the distribution of load
profile types for individual consumers, identified using K-
means clustering. Results indicated notable differences in the
variability of power consumption of different appliance types
and segments of the population, which could be exploited by
a DR program provider. We tested three different supervised
learning approaches for predicting consumer responsiveness
to electricity prices, and found that low-variance models such
as linear regression paired with recursive feature selection
resulted in the lowest test error.

Future work may investigate incorporating additional vari-
ables, such as day of the week and season into the availability
analysis. Expanding the analysis to a larger dataset may
provide more insight into the generalizability of the results.

Code for this project can be found at
https://github.com/ebuech/cs229.
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