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Abstract— This report presents three main findings in
the characterization of residential electric vehicle (EV)
charging: unsupervised charging behavior identification,
classification of car models, and forecasting of charging
load. Characterization is essential for electric utilities,
policymakers, and charging equipment companies to plan
infrastructure investment and inform demand-response
programs to better utilize renewable energy. From a high-
resolution dataset of 75 homes with EVs, charging sessions
are extracted and features such as power rate, session
energy, charging tail, and time variables are derived.
Firstly, k-means and DBSCAN clustering are used to
identify user behavior, presenting a potential automated
method to distinguish between full charge sessions and
user-terminated sessions, as well as between programmable
and non-programmable charging sessions. Secondly, the
derived features of battery capacity and maximum charge
rate are used as inputs to a semi-supervised Gaussian
Mixture Model to classify vehicle models. Thirdly, various
regression methods are tested to forecast aggregate day-
ahead and average week-ahead hourly EV load. Compared
to a naive persistence model baseline, a neural network
was found to have best overall performance on the test
split data averaged across both experiments.

I. INTRODUCTION

Electric Vehicles (EV) can serve as mobile energy
storage assets for the electricity grid by performing
demand response, participating in ancillary services,
and supporting renewable energy integration. However,
EVs also have the potential to adversely impact the
grid by further amplifying the solar over-generation
duck curve and by reducing the lifespan of existing
power transformers [1] [2]. The optimization of charging
schedules within users’ space of possibilities will be a
determining factor in the size of the environmental and
energetic footprint of EVs.

We deem it critical to understand the charging
behavior in a residential environment, as it has been
shown that the majority of charging occurs at home [3].
While the flexibility for EVs to provide grid services
has been studied in the public and commercial setting,
representation of EV charging in residential environ-
ments is less understood. The state of California, for
instance, plans to have over 5 million electric vehicles
in use by 2030. This makes residential smart charging
ever more critical to ensure EVs are supporting the grid

and helping achieve the state’s goal of reaching 100%
renewable energy by 2045.

We perform our characterization on high-resolution
(1-minute) residential electric vehicle charging data ob-
tained from 2016-2017 provided by Pecan Street, a
research test-bed in the neighborhood of Mueller in
Austin, Texas. This data was collected from 1,115 active
homes and businesses, which includes 75 electric vehicle
owners. From the raw time-series EV charging data, we
extract over 30000 charging sessions and derive various
features to input to our machine learning models, which
produce three main findings presented in this report.

Firstly, we characterize the different charging pat-
terns that exist in the data, using unsupervised clustering
algorithms. We use k-means clustering with heuristically
estimated battery capacity and maximum charge rate
of each home as inputs to output clusters which may
distinguish full charging sessions from prematurely user-
terminated sessions. We also use density-based spatial
clustering of applications with noise (DBSCAN) with
hour of day for the start and end times of sessions as
inputs to output clusters which potentially identify users
who have programmable charging equipment.

Secondly, we perform semi-supervised classifica-
tion of vehicle models using a Gaussian mixture model
(GMM) in the space of discovered characteristics. We
are able to leverage the labeling of a subset of electric
vehicles in the data set in order to infer the make and
models of other unlabeled cars. Heuristically estimated
battery capacity and maximum power rate for each home
were used as model inputs to output a vehicle model
label. Vehicle model classification is useful for cus-
tomer segmentation and identification of eligible smart
charging algorithms, since charging control can vary by
manufacturer and model.

Thirdly, we tested and tuned various regression
models to forecast hourly-resampled aggregate
residential EV charging demand. In our first experiment,
past seven days of demand, one-hot encoded day of
week, and one-hot encoded month of year were used
as inputs to the models to output the coming day’s
demand. In our second experiment, past four 24-hour
demand curves averaged over seven day periods,
one-hot encoded week of year, and one-hot encoded



month of year were used as inputs to the models to
output the 24-hour demand averaged over the coming
seven days. Forecasting of charging demand is essential
to perform predictive smart charging and provide
demand-response services such as load shifting, peak
shaving or valley filling, ramp mitigation, frequency
regulation, and renewable energy prioritized charging.

II. RELATED WORK

Existing literature in the field has largely focused
on characterizing EV energy demand on public infras-
tructure and proposing optimization methods to increase
the percentage of that demand that can be met with
renewable sources.

Sadeghianpourhamami, et. al. analyze data from
public charging infrastructure throughout the Nether-
lands collected between 2011 and 2015[4]. Their ob-
jective is to quantify EV flexibility characteristics in
order to facilitate their integration onto the grid. They
employ a DBSCAN in order to cluster users into three
categories: “charge near home” (27.84%), “charge near
work™ (9.3%), and “park to charge” (62.86%). After
analyzing seasonal effects on arrival times, observed data
is compared to the results of two optimizations designed
to flatten and balance EV loads with respect to renewable
energy supply.

Schuller, et. al. also employ linear optimization
techniques to more intelligently schedule charging ses-
sions and therefore maximize the percentage of energy
demand from EVs that can be met with renewables.
Their data is not from EV charging sessions but instead
from driving patters, from which they simulate charging
behaviors.

Very little, if any, literature focuses solely on iden-
tification of vehicle model from charging session data.
This is likely due to the lack of knowledge of EV model
in available data sets from public charging stations, and
the rarity of residential EV charging data that is recorded
separately from the load profile of the home.

III. DATASET & FEATURES

Electric vehicle charging data from 75 homes in
Austin, TX was collected from the Pecan Street Data-
port [5]. We received observations at 1-minute intervals
from the EV-specific sub-meter of the house. Example
data for a single home is shown in Figure [} Houses
with incomplete or erroneous data (i.e. very little to no
charges) were removed. Over 30000 charging sessions
were identified across all vehicles from 2016 and 2017,
after removing sessions associated with noise (peak
power less than 1 kW) in the data or fopping off of
a nearly-full and plugged-in car battery (session energy
less than 0.1 kWh or shorter than 2 minutes in duration).

Example Raw EV Charging Data from Single Home, Jan-April 2016
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Fig. 1: Example raw EV charging data from a single home

A second file contained the EV model associated
with each house. Some errors were identified in this data.
Vehicle models that only occurred once were removed.
The remaining vehicles were —Chevy Volt, Nissan Leaf
(both the 3.3kW and 6.6kW versions), Ford Fusion, and
Tesla Model S.

Charging sessions were extracted from the time
series using a state heuristic. For each home, a histogram
of charging power was created using Doane’s Formula
for determining binning [6]. The three most frequent
power bins were identified and sorted. The largest of
these three bins was determined to be associated with
the ON state, whereas the lower two were associated
with the OFF state and noise. Additional derived features
associated with each session include: session energy
[kWh], peak power rate [KW], time variables (e.g. start
and end-time, day-of-week, month, week of year), and
charging session tails. The charging session tail is the
decrease in power rate that typically occurs as a battery
approaches its fully-charged state. The tail was also
extracted using a heuristic utilizing numeric differentia-
tion of a moving-average smoothed (window size of 5
samples) power signal, determined as having a slope less
than -0.1 kW/min but occurring at least in the final 90%
of the session duration. An example extracted session
with identified tail is shown in Figure [2}

Sample Session Extraction with Marked Tails
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Fig. 2: An extracted charging session, with red dots indicating the
charging session ’tail’

IV. METHODS
Our study utilized three separate methods to char-
acterize residential EV charging:

o k-means clustering to identify full-charge and pre-
maturely user-terminated sessions; DBSCAN to



identify programmable chargers

o Semi-supervised GMM using Expectation-
maximization (EM) algorithm to classify unlabelled
vehicle models

o Various regression methods to forecast future EV
charging load

A. Unsupervised Clustering

k-means clustering was performed on the tails of
the charging session. The k-means algorithm can be best
described as finding the partition of all observations into
k <mnsets S={S1,..., Sk} such that:

k
arg min ; |S;|Var(.S;)

When implemented as an algorithm, randomized
cluster mean initialization, L2-norm distance metric, and
convergence tolerance of 0.0001 were used. For all
cluster labels ¢ € R,Vi = 1,...,m, data samples
@ € RO Vi = 1,..,m, and cluster centroids y;, €
RO, Vj=1,.. k:

1) Randomly initialize cluster centroids u;Vj =1,...k
2) Update and repeat until convergence:

¢ «— argmin ||z — p; |2 Vi=1,...m
j

Sim MW =ghat
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In order for the algorithm to cluster over tails
with varying power levels and duration, we found
it necessary to normalize the tails. Both the tail
power and tail duration were then discretized into
0, 20, 40, 60, 80, and 100 percentiles, forming two
six-dimensional features. To determine the number of
clusters k, we utilized the “elbow-joint” method by
plotting inertia (sum-squared distance of points to their
cluster centroid) as a function of k£ and choosing the
k where the decrease in inertia diminishes. From this
k = 3 was determined.

i <— ,m

DBSCAN algorithm was used to identify charging
sessions associated with a programmable charger. The
method is simply defined by two hyper-parameters: the
minimum number of samples to constitute a cluster and
the maximum distance allowable between samples of
the same cluster. Any samples not meeting this criteria
is marked as “noise”, not belonging to a cluster. An
advantage of DBSCAN is its ability to find arbitrarily-
shaped clusters, robustness to noise, and no requirement
to specify the number of clusters. As later shown in
the results section, DBSCAN is well-suited to find any
number of elongated shape cluster of sessions in the
start-end time space. A disadvantage of DBSCAN can be
determining its two hyper-parameters, however, with our

domain knowledge of our application, we are interested
in when programmable sessions constitute at least 10%
of the home’s total sessions and are within a 2 hour
L2-distance from one another.

B. Semi-Supervised GMM using EM

Utilities, including Palo Alto’s municipal utility, do
not have reliable data on which homes have an EV, or
the type of EV a home has. Knowing the EV model is
useful when crafting electricity rate structures, demand
response programs, and assessing distribution system
transformer upgrade needs.

Semi-supervised GMM EM was performed on
two features—charging rate and battery capacity—
in order to identify clusters which represent the
same vehicle models. The EM algorithm alternates
between computing the expectation of the Ilog-
likelihood evaluated using the current estimate for
the parameters and maximizing that expected log-
likelihood until convergence. The parameters of
interest for GMM, which finds Gaussian clusters,
are cluster centroids p; € R2,Vj = 1,...,k, cluster
covariance matrices X; € R?*2Vj = 1,..k,
and a multimodal distribution of the probability of
each cluster ¢; € R,Vj = 1,..,k. This is given
unlabeled samples ) e R2 Vi = 1,...,m, labeled
samples (¥ € R2Vi = 1,..,7m, latent labels
z=j,Vj=1,...,k, and weight o € R for importance
of semi-supervised samples:
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While most households in our data had labels for
vehicle model, we chose to perform an analysis robust
to even more missing labels which can be more easily
replicable in a similar real-world data sets. Each time
the semi-supervised EM was run, two vehicles of each
model were selected from the set and used as the
supervised examples. This allowed for an analysis of the
robustness of the algorithm to scenarios where a home’s
EV model is not known.

C. Load Forecasting Methods

Multiple forecasting methods for EV charging load
aggregated across all homes were explored on two
different experiments. The first involved predicting total



EV charging load for a 24-hour period given the hourly
load from the preceding week, one-hot encoded day of
week, and one-hot encoded month of year. The second
involved forecasting the average 24-hour period hourly
load expected for the following week given the averages
for the 4 preceding weeks, one-hot encoded week of
year, and one-hot encoded month of year. The time
features help account for seasonality in the data.

We established a baseline prediction with the per-
sistence model, which simply uses the current timestep
as the prediction for the next timestep. We then imple-
mented linear regression, support-vector machine (SVM)
regression, elastic net regularization, kernelized ridge
regression, and feed-forward fully-connected neural net-
works[7]. Using an error metric of root-mean-squared-
error (RMSE), hyper-parameters for all models were
tuned via a 5-fold cross validation grid search on the
training split data, which is all data from January 2016
to May 2017. Their performances are then measured by
their RMSE on the test split, which is all data from May
2017 - end of December 2017. We found the neural
network had best average performance between the two
experiments.The optimal neural network structure is
shown in Figure [3]
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Fig. 3: Neural network with ReLU activations was used for forecasting

V. RESULTS & DI1SCUSSION
A. Behavior Identification

k-means clustering was performed for the entire
set of EVs as well as separately for each model, to
ensure that car-specific charging session characteristics
were accounted for. Figure [] shows the results of the
clustering for a single EV. Figure [5] shows three sample
sessions for each of the three typical tail profiles shown
in Figure ] Note that sessions in Cluster #0 have a
gradual decrease in power over time, whereas those
in Clusters #1 and #2 tend to have a sharp drop in
power over a short period of time, possibly indicating
a prematurely terminated session by the user. A high
fraction of complete sessions vs. premature sessions
could help utilities identify neighborhoods with greater
charging flexibility.

Cluster #0, Count=314 Cluster #1, Count=3 Cluster #2, Count=13

Fraction of peak power

o0 o2
Fracti

Fig. 5: Sample charging sessions associated with each k-means cluster.
The tail is identified by the red dots.

DBSCAN was successful in identifying clusters of
charging sessions for certain car owners in the hour-of-
day start and end time space. We believe these to be re-
sult of programmable charging. One such result is shown
below in Figure [6] This user may have programmed
for their car to be 100% charged by 6AM, as seen by
the cluster of sessions ending at 6AM and starting at a
straight line between 2AM and 6AM depending on how
much charge is required. The “noise” labels are marked
in gray, having not correspond to a dense enough cluster
(as specified in Methods section).

startTime vs. endTime (Hour of Day)

endTime Hour of Day

o 5 10 15 20 Fal
startTime Hour of Day

Fig. 6: Result of DBSCAN on a single home



Leaf Leaf

True '\ Pred. Volt (B.3kW) Model S Fusion (6.6kW)
Volt 38 1 4 0 1

Leaf

(3.3kW) ! 0 3 0 0
Model S 0 0 16 0 0
Fusion 1 0 1 0 0

Leaf

(6.6kW) 0 0 4 0 3

TABLE I: Confusion matrix for vehicle model classification. Precision:
0.95, 0.00, 0.57, 0.00, 0.75; Recall: 0.86, 0.00, 1.00, 0.00, 0.43

B. Vehicle Classification

The semi-supervised EM model was able to pre-
dict the correct vehicle model with approximately 80%
accuracy. The accuracy varied slightly each iteration,
due to the random selection of the labeled data from
the set of all houses. Figure [/| shows the results of the
algorithm and Table |I] shows the confusion matrix. The
algorithm was most successful for classifying cars with
many samples, but fared poorer for cars with scarce data.

Semi-Supervised EM Accuracy: 78.2%

60 -
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|

Battery Capacity [kWh]

5 N ) Chevy Volt
Nissan Leaf (3.3kw)
y Tesla Model 5
| . Ford Fusion
i Nissan Leaf (6.6kw)

4 6 8 10 12 14 16 18 20
Charging Rate [kW]

Fig. 7: Semi-Supervised GMM EM for car model classification. Marker
color corresponds to true label, shape corresponds to predicted label,
and larger size corresponds to supervised labeled samples.

C. Load Forecasting

We initially undertook the task of predicting future
energy demand from individual cars. However, we were
unable to design a loss function that would keep our
models from simply learning the null prediction given
the sparsity and irregularity of charging sessions.

To remedy this, we then aggregated loads of all
cars to instead predict load for the entire neighborhood.
Our challenge then became to find models that would
not overfit the data. This is shown by the extreme
discrepancy between train and test error shown by the
unregularized linear regression, as seen in the final
results Table All other models were tuned, with
regularization coefficients, learning rates, and kernel
type determined by 5-fold cross validation grid search.

In the task of predicting weekly averages, the
baseline predictor actually performed very well on the
test split, highlighting the regularity of the data once

Train RMSE Test RMSE
Model (Daily, Weekly) (Daily, Weekly)
m = (476, 65) m = (244, 34)
Persistence | (586.02, 227.96) (533.12, 210.42)
Linear Reg. | (304.31, 7.15e-13) | (496.44, 437.43)
Elastic Net | (400.66, 164.33) (400.13, 241.46)
SVM Reg. (38.29, 109.19) (437.05, 235.67)
KR Reg. (316.51, 163.86) (459.70, 189.65)
NN (284.42, 166.42) (419.02, 209.53)

TABLE II: Performance for all methods in both experiments

averaged and emphasizing precaution needed to prevent
overfitting. Kernelized ridge regression obtained the
lowest test loss with a linear kernel and L2 penalty
coefficient of 2.005 x 107. In the day-ahead prediction
task, elastic net had the best balance between under and
overfitting, with a regularization term of 65700 and L1
to L2 penalty ratio of 0.25. However, neural networks
(architecture shown in Figure had the best overall
performance in both experiments. Its performance on
the test split data is shown in Figure [§]

Predicted vs. Actual Aggregate EV Charging for Test Data using Neural Net
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Fig. 8: Performance of neural network for seven day-ahead forecasts

VI. CONCLUSION

In this study, we used unsupervised clustering tech-
niques to potentially distinguish user-terminated charg-
ing behavior and programmable charging equipment.
Furthermore, we are able to classify an EV model
from its charging history with 78% accuracy. Lastly, we
developed a neural network that can forecast day-ahead
EV charging load for a residential neighborhood 21%
more accurately than the baseline persistence model. The
range in typical EV charging load throughout the day is
approximately 95% of the peak load. Upon inspection of
utility costs and typical transformer layout, we estimate
that smart charging of EV loads could save utilities $800
per EV in grid improvement costs through distribution
upgrade deferral.

Future work will involve estimating power demand
for individual EVs via utilization of an LSTM model.
We hope to then quantify load flexibility of EV aggre-
gations, and expand our scope to include ChargePoint
data from the entire Bay Area to calculate the broader
economic benefit of smart charging.
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Code for this study is available via zip-
file download from Stanford Google Drive
(requires stanford.edu organization access):

https://drive.google.com/file/d/
lcex4HlnxwgW/7Z2tsPUiHhVrQM3a_VVzdp/
view?usp=sharing. Code base is primarily written
in Python and Jupyter notebooks. The NumPy library
was used for scientific programming, Matplotlib library
used for data visualization, Sci-kit learn library used for
adapting machine learning models from and performing
grid search, and PyTorch library used for creating
neural networks [8] [9] [10] [7].
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