
HITPREDICT: PREDICTING HIT SONGS USING SPOTIFY DATA
STANFORD COMPUTER SCIENCE 229: MACHINE LEARNING

Elena Georgieva,1 Marcella Suta,2 and Nicholas Burton2

1Center for Computer Research in Music and Acoustics, Stanford University, USA
2Department of Civil and Environmental Engineering, Stanford University, USA

{egeorgie, msuta, ngburton}@stanford.edu

ABSTRACT

In the current study, we approached the Hit Song Science
problem, aiming to predict which songs will become Bill-
board Hot 100 hits. We collated a dataset of approximately
4,000 hit and non-hit songs and extracted each songs audio
features from the Spotify Web API. We were able to predict
the Billboard success of a song with approximately 75%
accuracy on the validation set, using five machine-learning
algorithms. The most successful algorithms were Logistic
Regression and a Neural Network with one hidden layer.

1. INTRODUCTION

The Billboard Hot 100 Chart [1] remains one of the
definitive ways to measure the success of a popular song.
We investigated using machine learning techniques to pre-
dict whether or not a song will become a Billboard Hot
100 hit, based on its audio features. The input to each al-
gorithm is a series of audio features of a track. We use the
algorithm to output a binary prediction of whether or not
the song will feature on the Billboard Hot 100.

This research is relevant to musicians and music labels.
Not only will it help determine how best to produce songs
to maximize their potential for becoming a hit, it could also
help decide which songs could give the greatest return for
investment on advertising and publicity. Furthermore, it
would help artists and music labels determine which songs
are unlikely to become Billboard Hot 100 hits.

2. RELATED WORK

The initial idea for this research project stemmed from
a New York Times article that used the Spotify audio fea-
tures to illustrate the similarity of summer songs [3]. Mu-
sic technology companies such as The Echo Nest, Chart-
Metric, and Next Big Sound have been using data analytics
to help artists and labels predict and track a song′s success
for almost a decade. This problem is referred to as Hit
Song Science (HSS) in the Music Information Retrieval
(MIR) field.

Machine learning is a popular research and industry
tool to approach the HSS question. Researchers have used
Convolutional Neural Networks [10] and K-Means Clus-
tering [6] to predict pop hits. Both of these studies were
engaging and successful, but focused more heavily on the
signal-processing involved in audio analysis.

Another group of researchers used Support Vector Ma-
chines (SVM) to predict top 10 Dance Hits [4]. By nar-
rowing the scope of the study to only dance music, re-
searchers were able to present a more focused work. An-
other study attempted to classify songs based on lyric con-
tent [7]. While they successfully classified many hits, they
also returned many false positives and concluded that ana-
lyzing lyrics is an ineffective approach to this problem.

3. METHODS

3.1 Dataset and Features

A dataset of 10,000 random songs was collected from
the Million Songs Dataset (MSD) [9], a free dataset main-
tained by labROSA at Columbia University and EchoNest.
This was narrowed down to songs released between 1990
and 2018. Next, we collected a dataset of all unique songs
that were featured on the Billboard Hot 100 between 1990-
2018, using the Billboard API library [2]. The datasets pro-
vided the artist name and song title, as well as other miscel-
laneous features. To balance the dataset between positive
(hits) and negative (non-hits) examples, we removed two
thirds of the songs collected from the Billboard Hot 100.
Finally, we removed overlapping songs to form a dataset
of approximately 4,000 songs.

Tracks were labeled 1 or 0: 1 indicating that the song
was featured in the Billboard Hot 100 (between 1991-
2010) and 0 indicating otherwise. Next, we used the
Spotify API to extract audio features for these songs [8].
The Spotify API provides users with 13 audio features, of
which we chose nine for our analysis: Danceability, En-
ergy, Speechiness, Acousticness, Instrumentalness, Live-
ness, Valence, Loudness, and Tempo. The first seven fea-
tures are represented as values between 0 and 1 by Spotify.
Loudness is measured in decibels and tempo refers to the
speed of the song in beats per minute.

To account for artist recognisability, we defined an ad-
ditional metric: the artist score. Each song was assigned an
artist score of 1 if the artist had a previous Billboard Hot
100 hit, and 0 otherwise. We looked back to 1986 for this
metric. There is some inherent inaccuracy in this measure.
If an artist had a hit song before 1986, but not after, they
were given an artist score of 0.

3.2 Algorithms

To predict a song′s success, we used six different
machine-learning algorithms: Expectation Maximization
(EM), Logistic Regression (LR), Gaussian Discriminant
Analysis (GDA), Support Vector Machines (SVM), Deci-
sion Trees (DT), and Neural Networks (NN). We focused
mainly on the accuracy of results, but we report the preci-
sion and recall as well. False positive predictions may be
costly if a music label invests in a song that is unlikely to
become a hit.

For an initial identification of clusters in the data, we
used the EM algorithm assuming no labelled data, then
compared the clusters to the actual labels. This algorithm
creates clusters of the data, according to a specified prob-
ability distribution. In each iteration, the parameters of
each cluster are calculated, and the probability of each data
point being in each cluster is calculated. We used a Gaus-
sian distribution with the following update rule.

w
(i)
j =

P (zi = j)P (zi = j)∑K
k=1 Pz

i = kP (zi = k)
(1)

θ := argmaxθ

m∑
i=1

K∑
j=1

w
(i)
j log

P (xi, zi; θ)

w
(i)
j

(2)

We then used the semi-supervised EM algorithm with
the labels of a randomly selected 20 percent of the exam-
ples. This algorithm incorporates the known labels into the
calculation of parameters as above.

For each supervised learning algorithm, we split the
data into training and validation examples using a 75/25
split. An additional test set was not needed. We tested
the accuracy against both the training and validation labels.
LR and GDA both fit a decision boundary to the data. LR
uses Newtons Method to maximise the logarithmic likeli-
hood on the training set, with the following algorithm.

Ha,b = 1/m

m∑
i=1

x(i)a x
(i)
b σ(θTx(i))(1− σ(θTx(i))) (3)

∇al(θ) = 1/m

m∑
i=1

x(i)a y(i) − x(i)a σ(θTx(i)) (4)

θ := θ −H−1∇l(θ) (5)

GDA fits a probability distribution to positive and neg-
ative examples, and calculates the decision boundary that
maximizes the logarithmic likelihood on the training set,
using the following equations.

P (x(i); θ) =
1

1 + exp(−θTx(i))
(6)

θ := argmaxθlog

m∏
i=1

P (x(i), y(i); θ) =

argmaxθlog
∏m
i=1 P (x(i)|y(i);µj ,Σ)P (y(i);ψ)

(7)
We then used SVM, which creates a decision boundary

based on the data points closest to the decision boundaries,
creating support vectors. We maximize the Lagrangian on
the training set with respect to values of alpha as follows.

m∑
i=1

αi − 1/2

m∑
i,j=1

y(i)y(j)αiαj < x(i), x(j) > (8)

αi >= 0, i = 1, ...,m (9)

m∑
i=1

αiy
(i) = 0 (10)

We used three different kernels (linear, radial basis
function (RBF) and polynomial), with notably different re-
sults.

DT creates a series of decision boundaries on the train-
ing set. Each boundary splits the data into two clusters
(within the current cluster) at a value of a feature that min-
imizes the Gini loss.

|R1|L(R1) + |R2|L(R2)

|R1|+ |R2|
(11)

L(Rm) =

K∑
k=1

Pmk(1− pmk) (12)

Our final approach in this hit predicting problem was to
use a Neural Network. We used a neural network regular-
ization, with one hidden layer of six units and the sigmoid
activation function. The L2 regularization function was ap-
plied to the cost function to avoid over-fitting.

J(W) =

N∑
i=1

(y − ŷ) + ||α1W1 + α2W2||2 (13)

Where W1 is the weight matrix mapping the features to
the hidden layer and W2 is the weight matrix mapping the
output of the hidden layer to the final output.

4. RESULTS

We used accuracy, precision and recall on the training
and validation sets to evaluate the performance of each al-
gorithm (Figure 2). Note that plots in this section show
only two features: Danceability and Acousticness.

The EM algorithm gave a poor accuracy of 50.1%, with
predictions on data points matching poorly to their actual
labels (Figure 1). The semi-supervised EM algorithm also
gave a poor accuracy of 46.9%. We concluded that un-
supervised learning algorithms are inappropriate for this
supervised learning problem.

LR and GDA yielded a reasonable accuracy of 75.9%
and 73.7% against the validation data, with similar accu-
racy against the training data indicating no overfitting. The

Figure 1. Original data and EM predictions. The accuracy
of the predictions is poor.

Figure 2. Analysis Results

average cross-entropy loss was 1.372. The precision and
recall on the validation set were acceptable. The confu-
sion matrix on the validation set shows that there are some
false negatives, meaning that songs that could potentially
become hits could be unnoticed (Figure 3). Using random
forests did not significantly improve the precision or recall.
We could potentially increase the precision by collating a
larger validation set with more positive examples.

For the SVM, each kernel yielded reasonable accuracy
on the training data but poor accuracy on the validation
data, indicating significant overfitting.

The DT algorithm can achieve full accuracy on the
training data, by creating closely spaced decision bound-
aries that split the data perfectly. However, this is likely
to cause high overfitting, with an accuracy of only 51.5%
on the validation set. We used random forests to correct
the SVM (linear and polynomial kernels) and DT against
overfitting. Four sets of parameters were considered and
the accuracy was recorded (Figure 10).

Using 10 trials of 500 random samples was the most
successful measure for each algorithm. The accuracy on
the training and validation sets were roughly equal, imply-
ing that overfitting was reduced significantly. Furthermore,
to prevent overfitting of the DT, we experimented with dif-
ferent maximum depths. Using a maximum depth of n (the
number of features) gave the optimal result (Figure 6).

The NN gives similar accuracy to LR, but interestingly
generates significantly higher precision. This shows the

Figure 3. LR Confusion Matrix on the Validation Set.

Figure 4. Decision boundaries for LR and GDA Algo-
rithms. Boundaries from the two algorithms were very
similar.

Figure 5. Results from Bagging Using Random Forests.

Figure 6. Analysis Results for Different Maximum Depth
of DT.

