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Abstract— DNA Methylation is an epigenetic process affect-
ing gene expression which has been linked to cancer [4]. A
combination of supervised and unsupervised machine learning
techniques have been implemented on epigenomics datasets to
build a classification model that can predict whether a person
will develop lymphoma (a group of cancers beginning in white
blood cells of immune system) in the future. An F1 score of
72% and accuracy of 69% have been obtained on test dataset
using a combination of PCA (with the projections of dataset
on the first 59 principal components) and logistic regression.

I. INTRODUCTION

Genome-wide methylation was first associated with future
lymphoma by Georgiadis et al. in 2017, who found that
epigenetic changes are already present in blood samples 2.1
to 15.9 years prior to diagnosis [4]. As a result, if such
epigenetic pattern changes can be observed in blood samples,
cancer can be detected years prior to diagnosis, increasing
the likelihood that patients will receive better medical aid.
This possibility of impacting the lives of those likely to
develop lymphoma was a natural motivator in tackling such
a big problem. The goal of this study was to build machine
learning models to predict future Lymphoma. We used two
main biomarkers that have been linked to the pathogenesis
of cancer: DNA methylation and fractional components of
immune cells.

DNA methylation is an epigenetic process whereby methyl
groups are added to DNA molecules without changing the
DNA sequence itself, typically acting to suppress gene ex-
pression. Measures of fractional components of immune cells
are derived from gene expression. Together, these biomarkers
provide insight into the differential expression of genes and
the pathogenesis of lymphoma and were used as parallel
inputs to our problem [4].

As on date, it is not possible for medical experts to look
at the data and predict the likelihood of a person having
lymphoma in future. As a result, the Bayes limit is currently
unknown for this problem.

The input to the algorithm includes 1) the DNA methy-
lation levels (floats) across different genomic probes and 2)
fractional components of immune cells (floats representing
the fraction of each component). We use unsupervised fea-
ture reduction along with several supervised learning tech-
niques (logistic regression, SVMs, GDA, neural networks,
and random forests) to output binary predictions of future
lymphoma.

II. RELATED WORK

Georgiadis et al. tried to perform pathway analysis to
identify the relevant genes and underlying biology pertain-

ing to lymphoma[4]. They also perform several supervised
and unsupervised learning techniques to assess classification
accuracy. As in our case, they implemented multiple classifi-
cation models in order to find the best, including SVMs with
both gaussian and linear kernels as well as random forests.
While we use GDA as a generative model, they use the Naive
Bayes classifier.

Feature selection is one of the main objectives in genomic
data used for disease classification. In fact, the number of
genes needed for discriminant analysis in disease classifi-
cation is likely much lower than 50 [2][7]. The challenge
of feature selection in similar genomics data has given rise
to many novel approaches. The MethylMix algorithm is a
relatively recent approach which identifies disease-specific
hyper- and hypo-methylated genes using a beta mixture
model [3][5]. The novelty of MethylMix lies in the metric
of differential, as opposed to absolute levels of methylation
in cancer. Many approaches to feature selection seem to
have in common that they take into consideration biological
relevance. For example, Georgiadis et al. implemented PCA
as a feature reduction technique in conjunction with the
identification of biologically relevant genes found via a
separate model. A biologically driven approach may be
extremely powerful if the assumptions of the model fit.

III. OBJECTIVE

Since recall is an important parameter to understand
the effectiveness of model, based on discussions with our
mentor in the Department of Bioinformatics, we selected F1
score as the optimization metric for the classification model.
Obtaining an accuracy of 50% is a satisfying baseline metric
for the model.

IV. DATASET AND FEATURES
A. Dataset

The data used in this study was obtained from Stan-
ford Department of Biomedical Informatics. There are three
datasets: 1) DNA methylation, 2) Immune Cell Fractions,
3) MethylMix + DNA Methylation. The DNA methylation
data set contains 566 pre-diagnostic blood samples (m) with
444,000 features (n). The features are methylation levels
across 444,000 genomic probes given as M-Values, which
are logarithmic ratios between methylated and unmethylated
signals. The Immune Cell Fractions dataset contains 196
pre-diagnostic blood samples (m) with 23 features (n). The
features are fractional values of various components of these
immune cells. The MethylMix + DNA Methylation dataset
is a subset of blood samples and features from the original



DNA methylation dataset. There are 196 blood samples (m)
with 101 features. The features have been selected from
the original DNA methylation levels using the MethylMix
algorithm, which identifies probes with disease related hyper-
and hypomethylated states. The selected features represent
differential levels of DNA methylation at these probes. The
set of 566 examples spans two cohorts with 234 total cases
of future lymphoma, while the sets of 196 examples include
76 cases of future lymphoma. Each of the three datasets were
split into train/validation/test sets of approximately 70/10/20.

B. Feature Selection Techniques

The small number of blood samples, large number of fea-
tures in the DNA methylation dataset, and inherent biological
noise present a set of challenges common across genomic
applications of machine learning. Moreover, DNA methyla-
tion levels are correlated across gene probes. It is therefore
desirable to capture the essence of the DNA methylation
dataset in a smaller feature space prior to applying supervised
learning techniques. Two feature reduction techniques are
used in parallel: MethylMix (data provided) and PCA. We
then applied the following supervised learning models to
the three datasets: logistic regression, GDA, SVMs, neural
networks, and random forests.

Application of the MethylMix algorithm on the DNA
methylation dataset reduced the number of features from
nearly half a million to 101. The objective of the MethylMix
algorithm is identification of disease specific hyper/hypo
methylated genes [3][5]. However, it is not certain whether
this is the best feature selection technique for lymphoma pre-
diction. Therefore, we also implemented PCA on the original
DNA methylation dataset to reduce the number of features
and biological noise associated with the data, retaining 70%
variance. We experimented with higher variance retention
but found 70% satisfactory given that fewer genes are likely
necessary in this problem [2][7]. Most of the meaningful
information corresponding to the original matrix can be
captured using the first several principal components.
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Fig. 1. Explained Variance vs Principal Components Index Plot (70%
Variance obtained by using 176 Principal Components, out of which 141
had more than 0.1% variance

As shown in figure 1, most of the information can be
extracted using a few principal components. To visualize
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Fig. 2. A) The first three principal components with PCA applied to the
DNA methylation dataset, B) The first three principal components with PCA
applied after MethylMix

the data, plots were made by taking projects of the data on
first two principal components. It was found that drawing a
decision boundary was not possible using the projections of
the DNA methylation data on first two principal components.
Separability increases when three principal components are
used instead (Figure 2A). It is highly likely that separability
increases as the number of principal components goes up.
However, owing to the limited number of examples, using
extremely high number of principal components will force
us to operate in null space. This will result in overfitting
and variance related problems. Thus, the number of principal
components to be used has been treated as a hyperparameter
while tuning the models.

Given the success of PCA as compared to MethylMix, we
decided to see if the combination of the two would yield
better results, to visualize the data better and understand if
the number of parameters can be reduced. We applied PCA
to the dataset output from the MethylMix algorithm, retain-
ing 95% variance with 49 principal components. However,
drawing a decision boundary is not possible using the first
two components of MethylMix data. Further, separability
associated with MethylMix data for the first 3 principal
components was lower as compared to separability associated
with DNA methylation data (Figure 2B). Because the number
of features has already been reduced by the application
of MethylMix algorithm, further parameter reduction might



result in loss of relevant information. We also had far fewer
examples for the MethylMix methylation dataset. Hence,
to avoid bias, we decided to use the entire column space
corresponding to MethylMix data while applying algorithms.

V. CLASSIFICATION MODELS AND METHODS
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Fig. 3. Overview of methods used.

A. Logistic Regression

Logistic regression model works well as a baseline. It is
easy to implement and usually gives good insights. Since we
began with limited information about the distribution, we felt
the application of a logistic regression model was a good way
to get started quickly and iterate upon. This decision was
further supported by the performance of logistic regression
in conjunction with parameter reduction in cancer detection
problems with similar data [2][6][7]. Given the relatively
small size of our dataset, we used Newton’s method with
the logistic loss function (Equation 1).

$(2) = log(1 + e~%) (1)

L2 regularization and ensembling techniques were used to
address the relatively small size of the dataset and overfitting
when training in a high dimensional feature space. Ensem-
bling techniques used include traditional bagging as well as a
more novel and linear approach in which we simply average
the model weights for k-fold training samples.

B. Gaussian Discriminant Analysis

Gaussian Discriminant Analysis is a generative learning
model that models the probability of the data given the
labels, as opposed to modeling the probability of the labels
given the data. GDA thus models attributes of the biomarkers
for the disease versus healthy state and uses this model to
predict future lymphoma given an unlabeled sample. GDA
models usually perform better if the distribution is Gaussian
in nature and if the number of examples is low. Since the
number of examples is low in our case and since we did not
know anything about the distribution, we decided to apply
GDA. Our mentor has suggested the data likely has a bimodal
distribution, and that it is likely that non-gaussian statistical
models will perform better on any DNA methylation data
[8]. Hence, we decided to apply power transform techniques

to induce normality [1]. Box-Cox Transforms (Equation 2)
have improved the performance of model using the maximum
likelihood estimation for lambda.
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The model’s parameters have been learned using Max-
imum Likelihood Estimation (MLE). Using the MLE pa-
rameters, predictions are made on the test set to test the
effectiveness of the model.

C. Support Vector Machines

Visualization of data plots using principal components
(Figure 2) gave us an impression that the data can be sep-
arated better using kernels to map the first several principal
components into higher dimensions. The intuition was further
supported by the fact that SVMs were used by Georgiadis et
al. when they tried to build classification models for this
problem[4]. Building on the intuition we developed after
visualization of data plots using principal components, we
implemented SVMs using polynomial, Gaussian RBF, and
linear kernels. Hinge loss function was used (shown in
equation 3).

6(2) = maa((1 - 2),0) 3)

Gaussian and high dimensional polynomial kernels faced
overfitting problems. We then tried a linear kernel, as in
Georgiadis et al., which performed best. The performance
was improved after tuning regularization and gamma margin
parameters using validation data. After learning the parame-
ters, the model was tested on test set.

D. Neural Networks

Since the logistic regression model gave good results,
we felt neural networks might extract deeper information
and give even better results. The number of parameters
corresponding to neural networks are higher than logistic
regression model and the number of samples available was
limited, so we decided to compensate by using fewer prin-
cipal components. Sigmoid activation layer was used for
the final layer; ReLU and sigma activation functions were
tried for hidden layers. Weighted binary cross entropy loss
function, shown in equation 4, was implemented with Adam
Optimizer (mini batch gradient descent) using TensorFlow
and Keras frameworks[10][11]. A weighted binary cross
entropy loss function was used to tackle the slight data im-
balance problem. Since recall is a very important parameter
for the model, application of weighted binary cross entropy
loss is justified; it penalizes the model if an actual true is
predicted as false. The threshold was selected empirically
based on the performance use the F1 metric on the training
set.

J(y,9) = —(Wylog(9) + (1 — y)log(1 = (9))) (4



Increasing the number of layers improved the training
accuracy but ran into over fitting problems; the model archi-
tecture was tuned to reduce variance. Further, to combat the
overfitting problem, different regularization techniques such
as L2 regularization (for kernels), early stopping, learning
rate decay, and drop out were used. The hyperparameters
tuned include the weight in weighted cross entropy loss
function, threshold, learning rate, learning rate decay, number
of epochs, activation function for hidden layers.

E. Random Forests

Decision trees are another useful model for non-linear
decision boundaries. However, decision trees are high vari-
ance models prone to overfitting, as can be imagined by a
tree where there is a distinct leaf for each training example.
Random forests are useful techniques for bagging decision
trees by training a bootstrapped sample on each tree and
averaging these models. We applied random forest models
with Gini Loss function, shown in equation 5, which similar
to the cross-entropy loss function for decision trees can help
to maximize the information gain from one level of the tree
to the next.

Similar to our neural network model, given the high
variance nature of decision trees and the limited number of
samples available, we trained the model using fewer principal
components as compared to other models.

Lgini = Z(ﬁc) * (]' - ﬁc) &)
c

The hyper parameters tuned include minimum leaf size
and maximum features considered in order to reduce over-
fitting that was quite apparent. Application of AdaBoost
improved the performance of the model by weighting mis-
classified examples during training in attempts of creating a

stronger learner out of a set of weaker learners.

VI. RESULTS, INFERENCES AND DISCUSSION
A. Best Predictor Combination

The best combination of model and dataset for lymphoma
detection was logistic regression with L2 regularization on
the DNA Methylation + PCA dataset with 59 principal
components (55% variance), achieving an F1 score of 72%
with 69% accuracy (Figure 5). With an increasing number
of principal components, logistic regression overfits the data
even with L2 regularization (Figure 6).

B. PCA outperforms MethylMix algorithm

All the classification models performed better on the DNA
methylation dataset where feature selection has been done
using PCA as compared to the dataset where feature selection
has been done using MethylMix algorithm (Figures 4A
and 4B). PCA may capture the information better than the
MethylMix algorithm in the context of lymphoma detection.
Applying PCA to the reduced MethylMix dataset did not
improve the best model, falling short with a 61% F1 Score
and 50% accuracy in comparison. While MethylMix might
not be a good fit, the poor performance could also be a
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Fig. 4. Best performance of each model on A) the DNA Methylation data
with PCA, B) The DNA Methylation data with MethylMix, C) The Immune
Cell Fractions data
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Fig. 5. Confusion matrix of logistic regression on the DNA methylation
+ PCA dataset using the first 59 principal components.
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Fig. 6. Logistic regression with L2 regularization A = 0.01 run on the
DNA methylation + PCA dataset varying the number of the first principal
components used. Overfitting occurs with increasing principal components.
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Box-Cox Transformations with varied values of A compared to the baseline
GDA on this dataset with no transformation. The MLE estimate of lambda
is —9.

result of the smaller size of the MethylMix reduced dataset
(196 examples) compared to the PCA reduced dataset (566
examples).

C. Immune Cells Fractions: Transform induces normality

GDA works better if the input data is gaussian in nature.
GDAs performance was improved when the input data cor-
responding to Immune Cells Fractions database was trans-
formed using Box-Cox transforms (Figure 7). Thus, it can be
inferred that Immune Cells Fractions dataset is inherently not
Gaussian and that transforms, most likely, induce normality.

D. Bias Variance Analysis

Overfitting was a common problem that most models
faced in the methylation datasets. Ensembling techniques
reduced the variance pertaining to the logistic regression
model. The variance problem was bigger in models involving
Neural networks and Random Forests; several regularization
techniques were implemented to reduce this variance (at the
cost of reduced accuracy). Regularized Logistic regression,

most likely, finds the right balance in bias variance trade-
off and hence performed the best for this data set. A larger
number of samples and optimized feature selection technique
may help to overcome this variance in the future.

VII. CONCLUSION/FUTURE WORK

Logistic regression model gave the best results after the
number of features has been reduced using PCA techniques.
While neural networks could capture the information better
and perform better on training datasets, they ran into over-
fitting problems and several regularization techniques have
been implemented to address this problem. Similarly, ran-
dom forests performed nearly as well as logistic regression
models, but faced the overfitting problem. Logistic regression
model likely performed better than GDA on the methylation
dataset, because of the fact that methylation data does
not follow a Gaussian distribution if it is not transformed.
However, GDA performed almost as well logistic regression
on the immune cells dataset, which is smaller and may have
an underlying Gaussian distribution which can be revealed
by de-noising and power transformations.

Future work should explore application of model and
dataset ensembling techniques as they might reduce the
variance and help in obtaining better results. Application of
similar models and ensembling techniques on an available
microRNA expression dataset can also, probably, help to
attain better results and obtain new insights as this is a related
biomarker. When the number of samples in the dataset
grows over a period of time, classification of lymphoma
subtypes using a softmax algorithm will be an interesting
problem to tackle. Ultimately, we would like to map the
principal components that were important predictors back to
the corresponding genes for biological experts to understand
the underpinnings of this disease.
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