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Abstract

PUBG(Playerunknowns Battlegrounds) is a video game that has become popular in
the past year. For this game, the final rank is the most important indicator of the player’s
ability. This project focuses on predicting the final rank and finding optimal strategies of
the game. With data from PUBG, we uses several machine learning methods including
ridge regression, lasso regression, lightGBM model, and random forest model to make
relevant predictions.

1 Introduction

As the most popular multiplayer online battle arena video game, PUBG has attracted more
and more players to join. The game features the last man standing deathmatch mode, in which
one hundred players fight against each other in a battle royale. Players can also choose to
match solo, or with small team of up to four people. In order to win the first place (a.k.a.
eat Chicken Dinner), players must choose appropriate strategies during the game and make
every effort to survive till the end. Various gaming strategies may include: collecting weapons
and shields versus collecting sufficient medical packs, engaging in every possible fight versus
avoiding battles, taking cars to relocate versus sneaking across bushes and forests, etc.

Given players statistics within a game, we plan to predict their final ranks. To be more specific,
we take the data from Kaggle[1] competition, which contains anonymized PUBG game stats.
The inputs to our algorithms are features that influence the players finishing placement. We
then use both regression models and tree models to output a predicted final rank. After
predicting final ranks, we perform an additional step to classify game strategies used by top
players, which may give the players a choice to adopt optimal strategies.

2 Related work

A significant part of our work is feature engineering. The source data provided by Kaggle
contains 4.45 million entries of training data, with 28 features in each entry. Some entries in
the data are invalid, and a few entries are generated by cheaters. We filtered out problematic
data entries first, then applied techniques to remove outliers, e.g., players who had no move in
the whole game but got kills, who had unreasonable head-shot rate or long-distance kills. Next,
normalization of features[2] is applied to numeric features, taking mean, variance and match
size into consideration. Combined features are also added to help the algorithm consider team
performance at the group level. Furthermore, we added cross validation to our train data[11].

To predict the rank of each player based on his statistic data, we firstly considered linear re-
gression algorithms. Besides the normal linear regression, we tried Lasso regression[3], elastic
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net[4], Ridge regression[5], and SGD regression. Ridge regression got the best MAE because it
handles regression data that suffer from multicollinearity better[6].

Tree algorithm is another series of widely-used algorithms that can be used as regression model.
We explored the random forest algorithm[7] first, and used fast.ai utils[8] to extract out impor-
tant features. Based on these features, we compared random forest model with lightGBM[9],
and got our best result (MAE = 0.0204) with the lightGBM model.

3 Dataset and Features

The dataset comes from Kaggle competition, which contains anonymized PUBG game stats,
formatted so that each row contains one players post-game stats. The columns are some fea-
tures that have impact on the players finishing rank, such as number of enemy players killed,
total distance traveled on foot/in vehicle/by swimming, number of weapons picked up, etc. Two
example waveform plots showing distribution of ’damageDealt’ and ’walkDistance’ by players.
(Figure 1)

Figure 1: ’damageDealt’ distribution (left) ’walkDistance’ distribution (right)

We first perform fully-covered data cleaning. Some observations in our dataset have really
weird characteristics. The players could be cheaters, maniacs or just anomalies. Removing
these outliers will most likely improve results. We inspect the data and figure out the types
of players to be removed: killing without moving, anomalies in aim(more than 10 roadKills,
more than 45 kills and 100% headshot rate), anomalies in total travel distance, anomalies in
weapons, etc.

We apply a few feature engineering methods to process the data:

1. Add group-statistic data: As the final score is the same for all members within a group, for
each group in a match, we get the mean/sum/max/min value of each feature within the
same group, then rank the values within the same match to get the mean/sum/max/min
value ranking as a new feature for each group.

2. Since the number of players joined in each match is different, we first normalize feature
values based on the amount of players joined in a match, and then normalize the features
by mean and variance.

3. Convert categorical feature such as ’match type’ into one hot vector.
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4. To better capture information hidden behind group of features, we add combined features
such as totalDistance = rideDistance + walkDistance + swimDistance, ’healsandboosts’
= ’heals’ + ’boosts’

5. Define new feature ’fights’ to quantify amount of battles players involved

6. Define feature ’escape’ to indicate how likely a player tend to run away from danger

4 Methods

4.1 Regression Models

We have tried five most commonly used regression models. Linear regression was selected as
our baseline model with a baseline MAE score at around 0.09, and based on that, we continued
to try ridge regression, lasso regression, elastic net regression, SGD regression. Ridge regres-
sion has the best out-of-box result with the help of aforementioned feature engineering, likely
because it handles multicollinearity data better.

Ridge regression is a technique for analyzing multiple regression data that suffer from mul-
ticollinearity. When multicollinearity occurs, least squares estimates are unbiased, but their
variances are large so they may be far from the true value. By adding a degree of bias to the
regression estimates, ridge regression reduces the standard errors.

4.2 Tree Models

Decision tree are a popular tool in machine learning, specifically in decision analysis, to help
identify a strategy most likely to reach a goal. In this case, we have applied random forest
algorithm and lightGBM (light gradient boosting machine) algorithms. LightGBM results in
quite good MAE score, which shows significant improvement on linear regression models.

LightGBM is a new algorithm that combines GBDT algorithm with GOSS(Gradient-based
One-Side Sampling) and EFB(Exclusive Feature Bundling).[9] Specifically, LightGBM uses
histogram-based algorithms, which bucket continuous feature (attribute) values into discrete
bins. This speeds up training and reduces memory usage. Theoretically, in lightGBM algorithm
with GOSS method, first, we rank the training instances according to their absolute values of
their gradients in descending order; second, we keep the top-a ∗ 100% instances with the larger
gradients and get an instance subset A; then, for the remaining set Ac consisting (1−a)∗100%
instances with smaller gradients, we further randomly sample a subset B with size b ∗ |Ac|;
finally, we split the instances according to the estimated variance gain over the subset A ∪ B,

i.e.,
thus, the computation cost can be largely reduced. More importantly, GOSS will not lose much
training accuracy and will outperform random sampling.

4.3 Semi-supervised Mixture Gaussian

A Mixture Gaussian model is a probabilistic model that assumes all the data points are gen-
erated from a mixture of a finite number of Gaussian distributions with unknown parameters.
One can think of mixture models as generalizing k-means clustering to incorporate information
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about the covariance structure of the data as well as the centers of the latent Gaussians. Semi-
supervised Mixture Gaussian model adds a portion of labeled data into the existing mixture
model to help algorithm learn accurately and converge faster. Below is the update rule for
GMM.[10]

5 Results and Discussion

Our main motivation is to measure the accuracy of predicting players’ winning placement and
primary metric is MAE of predicted winning placement. The winning placement is a decimal
value ranges from 0 to 1 while 0 corresponds to last place and 1 corresponds to the first place.
Our best result comes from LightGBM model with a MAE of 0.0204; this result was ranked 57
in Kaggle leader board as of Dec 10.

In our baseline attempt, we feed only raw features into various models, including Linear Re-
gression, Ridge Regression, Lasso Regression, Random Forest and Light Gradient Boosting
Machine Model. Then we tune our models by adding engineered features step by step and
observe that models gradually improved. The last step we perform is applying 5-fold cross
validation to the data set. Please refer to the following table for detailed result we recorded
from each step. For conciseness, we only selected best model from regression family and tree
family, plus Linear Regression as reference.

MAE on 20% validation set Linear Regression Ridge Regression Light GBM

Raw features 0.09000 0.08989 0.05654
Raw + mean 0.05736 0.05736 0.04158

Raw + mean + sum + max - min 0.04845 0.04845 0.02896
Everything above + match mean + size 0.04825 0.04825 0.02755

Everything above + cross validation 0.04812 0.04810 0.0204

In the Light GBM model, we used learning rate 0.05. Although we understand model could be
trained faster with slightly higher rate, we choose to use a conservative number just to make
sure algorithm converges properly. In order to reduce bias, we introduced k-fold cross validation
and found out 5-fold performed better than 10-fold.

Another part of our motivation is to categorize the different gaming strategies of top players.
Some example strategies are camping (hide in one place and wait for others to come), actively
fighting (engage in more fight to collect weapons and equipment) and escape (avoid fights in or-
der to survive till the end). We expect players who use camping strategy have less total moved
distance and high final rank; on the other hand, active fighter will have high total damage and
best equipment.

We first trained two unsupervised learning models, K-means and Mixture of Gaussian, and tried
to observe the relationship between winning placement and strategy-related features. However,
we couldn’t find obvious pattern in model predicted players’ categories. In other words, when
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plotting the strategy related features of a predicted class, there is no clear insight in data distri-
bution. After further investigation, we realized the problem is in our data. The game data we
used is post-game statistics, when means it doesn’t have the power to describe what happened
during the game. Given players choose strategies flexibly, we cannot expect a player stick to
one strategy throughout the game. Therefore, we spend extra step in categorize players’ gam-
ing strategies holistically. By using semi-supervised Mixture of Gaussian learned in class, we
manually assign 4 classes according to a few important features, and observe if these classes
can differentiate winning placement. And we found the following patterns:

1. Game prefer fighters. The cluster labeled with most aggressive players has a mean win-
ning placement over 0.95, while the most conservative players cluster only has winning
placement around 0.4.

2. Don’t stay in one place. Although our model indicates keep avoiding confrontation does
not increase final rank, staying in one place will bring players troubles. The cluster labeled
no-escape only has mean winning placement around 0.26.

Please refer following Figure 2 to see the clusters plotted with winning placement as Y-axis,
and ’fights’/ ’escape’ as X-axis.

Figure 2: ’fights’ and ’winPlacePerc’ in different clusters (left) ’escape’ and ’winPlacePerc’ in
different clusters(right)

6 Conclusion

With effective feature engineering and appropriate model selection, we achive decent results
and observe that lightGBM performs best in predicting final ranks. Moreover, we explore some
interesting gaming strategies which we will give out to PUBG players as Free Chicken Dinner!
For future work, we will train the AI to play PUBG and win. With the results we have arrived
at, we will train the bots to maximize the exponentially decayed sum of future rewards with
data produced entirely from self-play, that is, the bots are playing against themselves to learn
to play by the strategies that maximize their chances of winning. By building AIs that succeed
in complex and dynamic games like PUBG, we believe it can bring humanity closer to the
ultimate goal of making AGIs that function in the messiness of the real world.

7 Code

https://www.dropbox.com/sh/zuktbhf6h0fo0iz/AADU5PCw2lK5evL5RWaikBMYa?dl=0
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8 Contribution

All members in our team performs extraordinary. Wenxin Wei worked on data cleaning and
training with regression models. Xin Lu worked on feature engineering and training with light-
GBM model. Yang Li worked on feature engineering, training with random forest, unsupervised
learning algorithms and cross validation.
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