
Predicting Conference Paper Acceptance

William Jen Shichang Zhang Muyun Chen

Abstract

In this paper, we examine the possibility of building a model to classify whether a
conference paper can be accepted or rejected to a certain conference. We used the
PeerRead dataset to build models to classify paper acceptance to ICLR, using 18
features including but not limited to number of authors and figures, abstract bag
of words, and whether the abstract contains words like ’deep’ or ’neural’. Using
accepted and rejected papers from ICLR 2017, we trained the following models
on the 172 accepted and 255 rejected papers from ICLR 2017: logistic regression
with L2/L1 regression, SVM with the RBF kernel, random forest, AdaBoost, and
a fully-connected neural network. We found that the SVM with the RBF kernel
performed the best with an accuracy of 71%, an improvement over prior research’s
best of 65.3%.

1 Introduction

In recent years, there has been an explosion in scientific research applying machine learning onto
ever-growing datasets, thanks to recent advances in computational power. In 2017 alone, 3,120 papers
were submitted to the Neural Information Processing Systems (NIPS) conference, but only a mere
679 papers were accepted. While the peer review process is the most important way to judge the
quality of research work, the scientific community has identified potential issues with the process,
ranging from consistency to bias issues. One clear way to avoid these issues is to use a computer to
evaluate submissions directly. The goal of this paper is to predict the acceptance of a given academic
paper.

We receive raw pdfs and their reviews and labels (accept/reject) as our input, transform them into
JSON files using science-parse, a library created from Kang, et. al [2], and then try a variety of
models such as logistic regression with L2/L1 regularization, SVM, Random Forests, AdaBoost, and
fully-connected neural networks to classify whether a paper will be accepted or rejected. We then
look at each model’s accuracy.

2 Related Work

Kang, et. al.[2] published initial work on this topic in April 2018 with the public release of PeerRead,
a structured dataset that collects several research papers from several ML/AI conferences, such as
NIPS, ICML, ICLR, and more. Further, they also developed a Java tool called science-parse to extract
useful features from research papers in pdf form, such as specific paper sections, number of figures,
equations, and more. These papers are also accompanied by reviewer comments with numerical
ratings for the paper as well as confidence ratings for those ratings. The full feature set can be found
in Kang, et. al [1].

3 Dataset and Features

We took the 427 papers submitted to ICLR 2017, including 172 accepted and 255 rejected papers.
For each paper, we extracted 18 features. To simplify the model, all of our features are numerical or

Figure 1: PCA visualization of word2vec: Closer words should appear closer together.

Boolean. Some coarse features include length of the title, the publication year, whether the fancy
terms like ‘deep’ or ‘neural’ appear in the abstract. There are also more sophisticated lexical features
extracted from the abstract of each paper. We used word2vec techniques to capture the information of
the abstract. We reconstructed the linguistic contexts of words. In this case, we get a 300-dimensional
vector space. All of the words in the abstract get mapped to a vector in this space. Thus, it is
much easier for us to measure the similarity between word vectors. We can also get a visualization
of the words by dimension reduction technique, e.g. principal component analysis (PCA), linear
discriminant analysis (LDA), or t-distributed stochastic neighbor embedding (t-SNE). When we
actually put this feature into the model, we only take the word counts to make this feature numerical
and be consistent with other features we have. The full feature list can be found in the appendix.

Table 1: Extracted features from conference papers

Feature Name Description Type

Abstract contains ML keyword Whether abstract contains ’deep’, ’neural’, etc. boolean
Title Length # of characters in title integer
Authors Number of authors integer
Most Recent Reference Year Latest year that a reference was published integer
Number of References How many references this paper uses integer
Number of Cited References How many cited references this paper uses integer
Avg. Length of Mentioned References How long each reference was talked about (in words) integer
Number of Recent References # of recent references (i.e. this year) integer
Number of Figure/Table/Eqn References # of references to tables, figures, and equations integer
Number of Unique Words How many unique words this paper uses integer
Number of Sections How many sections this paper uses (as det. by science-parse) integer
Average Sentence Length Avg. length of sentence, in characters float
Contains Appendix Does this paper have an appendix? boolean
Proportion of Frequent Words Proportion of frequent words float
Abstract’s Bag of Words Bag of words in abstract integer
TFIDF-weighted Abstract’s Bag of Words TFIDF-weighted bag of words for importance scaling float
GloVe Average GloVe vector embedding of abstract float
GloVe + TFIDF Abstract Bag of Words with TFIDF weighting float

4 Methods

Kang, et. al.[2] trained and tested a logistic regression, SVM, boosting, and a single layer fully-
connected neural network based on the extracted features. We first reimplemented their models, and
then examined them more in-depth by tuning each model’s hyperparameters. We then opted to train a
random forest to observe its performance on the classification problem.

2

Here are all the models that we explored:

• Logistic regression with L2/L1 regularization with the regularization hyperparameter λ
varied linearly from [0, 1] over steps of 0.1. Kang et. al only examined the set [0.1, 0.25, 1].
In logistic regression, we classify a training example as positive if h(θTx) > 0.5, negative
otherwise. Regularization helps prevent model overfitting.

min
θ

m∑
i=1

∥∥∥y(i) − h(θTx(i))∥∥∥2 + λ ‖θ‖2

h(θTx) ≡ 1

1 + exp (−θTx)

• Random Forest: We varied the number of trees as well as overall depth to prevent overfitting.
Random forests are an ensemble method where each tree is fit to a set of bootstrapped training
samples. Each tree has high variance, but random forests reduce the overall variance by
averaging across all trees in the random forest.

• SVM with L2 regularization using a RBF kernel as defined below:

min
w,b

1

2
||w||2

subject to y(i)(wTx(i) + b) ≥ 1 ∀i = 1, . . . ,m

K(x, x̃) = exp

(
−||x− x̃||

2

σ2

)
• AdaBoost: We used 50 weak classifiers as shown in Figure 2. The main idea behind

Adaboost is to take a poorly-performing classifier (one that performs above, but close
to 50% accuracy), and then feed the mispredictions to another weak classifier. Each
subsequent classifier "fixes" the mispredictions of the previous classifiers through a penalty
for mispredictions from the previous classifiers. With a long enough chain, this will
eventually result in an accurate end prediction.

Figure 2: AdaBoost algorithm visualized [1]

• Fully Connected Neural Network (Figure 2): We used ReLU (max(0, x)) as our activation
function. Kang et. al tried only a single layer with 10 neurons, so we varied the number of
neurons from 10 to 100 neurons with a step size of 10, and also repeated with a two layer
neural network.

Although a CNN was recommended, we determined it inappropriate based on our features. Typically,
convolutional layers are useful for temporal or spatial relationships, such as those that can be found
in time series or images. However, our feature set does not include any of these.

3

Figure 3: Fully connected neural network diagram [1]

5 Results and Discussion

We used sklearn [3] to implement each model, and used five-fold cross-validation for each model. The
result we show in the Table 1 are the models with the best hyperparameter for each model category.

Table 2: Train and test accuracies for the various models used.

Model Train Accuracy(%) Test Accuracy(%)

Majority 60.17 60.53
Logistic L2 42.41 42.10
Logistic L1 68.48 68.42
SVM RBF 72.49 71.05
Random Forest 99.43 63.16
AdaBoost 96.56 50.00
Neural Network 63.04 60.53

For the ICLR 2017 dataset, Kang et. al reports an test accuracy of 65.3% with a 7% standard
deviation, but does not report which method.

In our case, we performed the highest performing model was the SVM model with RBF kernel, but
we expected the neural network to perform better. One reason for this is that our dataset is relatively
small with only 427 samples. Typically, neural networks require at least an order of magnitude larger
dataset for good accuracy.

We also note that the AdaBoost and Random Forest models are significantly overfit. Indeed, our
experiments showed that Adaboost with 50 weak classifiers is no better than random guessing! For
the random forest model, even when we limiting tree depth and number of trees, we still observed
some overfitting with even poorer accuracy.

We also used PCA to visualize to the ICLR dataset given our feature set in an attempt to understand
the relatively poor classification accuracies that we observed. In Figure 3, we see that our current
feature set does not effectively distinguish between accepted and rejected papers. From this, it does
make sense why model classification accuracies are not much better than random guessing. This is
good news - this implies that a conference paper’s contents are the driving factor for acceptance or
rejection, exactly how the peer review process should function.

4

Figure 4: 2D visualization of the ICLR 2017 dataset, where blue dots are accepted papers and red x’s
are rejected papers.

6 Future Work

Our work focused on the ICLR dataset, which has limited examples. Similar studies can be done on
other conferences with more submissions, like NIPS, or for the same conference but with submissions
across years. One interesting experiment we could try is to use our trained model from one conference
to predict the acceptance of a paper for another conference. This will tell us the preference of different
conferences. If two conferences are looking for similar values, the model should provide an equally
well prediction result. However, it could also be the case that the model performs poorly, from which
we can conclude that two conferences prefer different styles of papers.

To improve classification accuracy on the current ICLR 2017 dataset, we need to employ NLP
techniques to extract features to represent the core paper content. We can also extract additional
features, such as figure and table content, but this will require additional modifications to the science-
parser tool.

A significant issue that we ran into was the lack of labels for papers. Kang et.al artificially expanded
their training set through a set of heuristics using review comments as well as looking for references
to an unlabelled paper from a known, published paper. We believe that a semi-supervised algorithm
(e.g. semi-supervised EM) can potentially use these unlabelled papers to improve predictions.

5

7 Contributions

• William (wjen) worked through the public PeerRead dataset and code and set up the
necessary infrastructure to process the raw dataset. He also verified Kang, et. al.’s results on
their prediction methods, and helped implement the models.

• Shichang (shichang) examined the data in depth, performed PCA visualizations to better
understand the data, and gave recommendations based on the data. He also provided insight
into feature extraction, as well as background on the AdaBoost algorithm, which was not
covered in depth during class.

• Muyun (muyunc) worked on feature extraction, and worked with GloVe to gain a better
understanding of the framework. She also implemented the various models when we met in
person on Shichang’s laptop.

Finally, all members collaborated in writing the final report. The repository can be found here:
https://github.com/collielimabean/PeerRead

6

References
[1] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning.

Springer Series in Statistics. Springer New York Inc., New York, NY, USA, 2001.

[2] Dongyeop Kang, Waleed Ammar, Bhavana Dalvi, Madeleine van Zuylen, Sebastian Kohlmeier,
Eduard Hovy, and Roy Schwartz. A dataset of peer reviews (peerread): Collection, insights and
nlp applications. In Meeting of the North American Chapter of the Association for Computational
Linguistics (NAACL), New Orleans, USA, June 2018. URL https://arxiv.org/abs/1804.
09635.

[3] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pret-
tenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning
Research, 12:2825–2830, 2011.

7

https://arxiv.org/abs/1804.09635
https://arxiv.org/abs/1804.09635

	Introduction
	Related Work
	Dataset and Features
	Methods
	Results and Discussion
	Future Work
	Contributions

