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Abstract— As humans have naturally optimized their move-
ment towards a metabolic minimum, it is difficult to improve
human walking economy or assist individuals with ambulatory
deficiencies with simple control strategies. Human-in-the-Loop
Optimization (HILO) is a technique using assistive robotic
devices to augment human walking performance to overcome
this challenge. A common metric used to determine human
performance is metabolic cost, which is the amount of energy
used by the human to perform a certain task. However,
metabolic cost yields noisy measurements, is slow to respond,
and is very difficult to measure outside of the laboratory envi-
ronment. Therefore, we are interested in predicting metabolic
cost using human walking data collected during human-in-the-
loop optimization experiments. By approximating metabolic
cost with other features that can be measured outside the
laboratory environment, we may be able to design more robust
and diverse assistance adaptation experiments in the future.
Using a simple neural network implementation with a single
hidden layer, trained on multiple days of walking data, we
were able to achieve across-validated prediction accuracy with
an MSE as low as 0.0089 on a data set with a variance of
0.061. The inherent noise in metabolic data sets a minimum
achievable MSE of around 0.0025.

I. INTRODUCTION
Humans are naturally skilled at walking, since evolution

has shaped our physiology to naturally optimize motor con-
trol [1]. However, human performance can still be augmented
or improved, especially for people with impairments that
inhibit walking ability. Ankle exoskeleton research has made
significant progress on reducing the weight of the hardware,
as well as developing control algorithms for assistance. In
particular, researchers have noticed significant improvements
in human energy use when including human feedback in
control algorithm design and when control algorithms are
customized for individuals [2]. Recent developments in con-
trol algorithms for assistive devices use various optimiza-
tion algorithms, including gradient descent [3], Covariance
Matrix Adaptation-Evolutionary Strategy (CMA-ES) [2], and
Bayesian Optimization [4] to find the best set of control
law parameters for a particular individual and hardware
combination. These techniques use online measurements of
metabolic cost to define the cost function over which to
optimize.

Metabolic cost is a measurement of rate of the energy
required to perform a certain task at the tissue level. Energy
cost is optimized naturally by animals, and is a useful metric
when determining whether a motor skill is being performed
optimally. Collecting metabolic cost data, however, is very
difficult and limiting. Firstly, it cannot be easily measured
outside of a laboratory setting and requires subjects to
wear a restricting mask in during experiments. Subjects are

also required to fast for a few hours prior to recording
metabolic data which may be especially difficult for long
trials. Metabolic cost is slow to change as the human adapts
to a new control law, making it difficult to use as feedback for
control parameters. It can take over a minute for metabolic
data to reach a steady state value for any particular task
[5]. Metabolic cost is also a very noisy measurement and
typically many filters must be applied before the signal can
be determinable.

Further complications of human-in-the-loop optimization
involve the adaptation of the human to the hardware itself.
Naı̈ve users of the exoskeleton likely perform at a different
level than expert users of the exoskeleton, and therefore
different optimal control laws are applicable for individuals
of varying expertise. Naı̈ve exoskeleton users are simulta-
neously training and improving their expertise while the
control parameters of the device are being optimized for
their current level of expertise. During training, the optimal
control parameters shift, framing the simultaneous training
and optimization as a non-stationary process.

Due of the success of stochastic optimization algorithms in
providing optimal control parameters and improving human
energy consumption [2], [4], we would like to increase the
effectiveness of Human-in-the-Loop optimization by improv-
ing the experimental process. In particular, we seek to use
various metrics to predict metabolic cost such that human
experimental studies can be made more feasible. The benefits
of predicting metabolic cost extend to being able to run
long experimental studies on humans, which could be taken
outside of the lab and therefore inconvenience the human
subject to a lesser degree.

Recent work has shown that many biological gait param-
eters can be robustly measured outside of the laboratory
environment. These include, but are not limited to, joint
angles [10], ground reaction forces [7], gait patterns [6], and
surface electromyography (EMG) [11]. Using other outputs
as a proxy for metabolic data could allow for faster conver-
gence of laboratory experiments as metabolic data is slow to
change, but could also allow for studies to be carried out for
significantly longer by not constraining all experimentation
to a laboratory setting. Furthermore, removing experiments
from a laboratory setting allows assistive devices to be tested
in the environments where they would likely be used, such
as uneven terrain or inclines.

II. METHODS

An ongoing study in the Stanford Biomechatronics Lab-
oratory examining the effects of simultaneous training and



optimization using bilateral ankle exoskeletons is the source
of all the data presented here. Only naive subjects are used
in order to study the effects of training. The control strategy,
which was used in the human-in-the-loop optimization study
by Zhang, et. al. [2], is dictated by 4 parameters that describe
the dynamic torque applied at each ankle by the exoskeleton
hardware. These control parameters include peak time, rise
time, peak magnitude, and settling time of the torque applied
at each ankle. The current study includes data collection of
metabolic rate, ground reaction force, ankle angle, and 8
surface EMG sensors per leg giving muscle activations for
both upper and lower leg muscle groups, all collected over
several optimization trials, which are 72 minutes in length,
as well as over several static (constant) control trials and
zero-torque trials. The 72 minute trial consist of 36 different
control schemes where the control scheme changes every
2 minutes. This data is collected over 6 different days of
walking in the exoskeleton for each subject. During these
optimization trials, the human subject learns to walk in
the exoskeleton while a CMA-ES optimizer determines the
next generation’s set of optimal control laws to apply using
feedback with the data collected. Up to 8 generations of
optimal control laws are identified per subject.

A. Data Processing

1) Metabolic Data: Baseline metabolic measurements are
different for every person and can shift significantly from day
to day. For this reason, metabolic data is recorded for one
6 minute standing trial and two 6 minute normal walking
trials. The mean metabolic rate from the standing trial is
considered to be baseline for that day of experiments and is
subtracted off from all other metabolic data from that day.
The metabolic measurements from the first half of the normal
walking trial are discarded as participants metabolic rate
is still increasing from the prior inactivity and the average
metabolic rate from the remainder of the normal walking
trials is used as a normalizing factor for the metabolic data
taken from that day. Measurements are only taken from the
last 30 seconds of each 2 minute sub-trial to allow for the
subject time to adjust to the new control parameters.

2) Step Data: Using signals from heel switches mounted
in the shoes and ground reaction forces from the treadmill
the gait phase can be easily determined. For each 30 sec-
ond interval of data recorded, the following features were
extracted from the raw data on a per-step basis:

• Peak vertical reaction force before toe-off
• Maximum/minimum ankle angle
• Stride Width
• Stride Time

As a very short or very long stride may significantly shift
the mean for these parameters, the median of each step
parameter of the 30 second period is chosen instead. Ground
reaction forces are normalized by subject’s weight on the day
of the experiment to account for small changes in weight
between days.

3) EMG: As EMG signals are noisy AC signals, the signal
mean is not a well correlated to the muscle activations.
A standard approach to processing EMG signals is to run
the data through a high-pass butterworth filter followed by
rectifying the signal and filtering with a secondary low-pass
butterworth filter. The RMS of the resulting signal can then
be correlated with the magnitude of muscle activations.

Although EMG sensors are placed in approximately the
same locations on every day in the experiment, small de-
viations in sensor location can lead to large changes in the
magnitude of the electrical signal. To account for this, EMG
signals are recorded for two 6 minute periods of normal
walking on each day. After initial processing as described
above, the peak value for each signal is calculated. These
peak values are then used as normalizing factors for each
signal during the optimization trials.

B. Algorithms

1) Curve Fitting: To set a baseline prediction value to
compare against a neural network implementation, we in-
vestigate a simple linear regression model for predicting the
metabolic cost. As the total number of features (29) is on
a similar order of magnitude to the number of data points
per subject (≈ 180) standard linear regression is prone to
overfitting. To account for this we use lasso regularization
and apply k-fold cross-validation with k = 10 to determine
the proper value for the regularization term.

To attempt improve on the prediction accuracy of the linear
regression we use a standard neural network with one hidden
layer, a tanh activation function between the hidden layer
and the output layer and a linear activation on the output.
As the data set is small and inherently noisy from metabolic
measurements, we found that we were not able to create
statistically meaningful train, validation and testing splits
from the data and instead ran a k-fold cross validation to
tune the network and choose an appropriate value for the
number of neurons in the hidden layer. We performed our
network training using a Bayesian Regularization algorithm.
Although significantly slower than other training algorithms,
Bayesian Regularization has been shown to be more robust
at avoiding overfitting for noisy and small data sets [13].

The features can be broken up into three categories:
1) step data, 2) EMG data, and 3) exoskeleton control
parameters. To investigate which category of features are
most important for making accurate predictions, the cross
validation described above for linear regression and network
tuning was performed four times on using 1) all features,
2) step & EMG features, 3) step only features and 4) EMG
only features.

2) Dimensionality Reduction: The number of input fea-
tures characterizing our dataset is quite large compared to the
amount of samples. In total, we have 29 features (including
controls), and 180 data points. Therefore, it would make
sense to reduce the dimensionality of our features to prevent
overfitting. We used forward step-wise selection to select
features in a reduced model, and perform cross-validation
with the new models to select the best subset of features
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Fig. 1: The black dashed line above represents the minimum achievable MSE based off inherent noise in metabolic data.
Comparisons of training networks on data from two subjects using (a) all features, (b) step and EMG features, (c) step
features only and (d) EMG features only.

using the network tuned in the k-fold cross validation step.
Due to the variability of forward step-wise selection, we ran
several trials to determine the features that are consistently
significant across trials. For more stable results, we also used
Principal Components Analysis (PCA) after normalizing our
dataset to compare model selection methods.

III. RESULTS

The mean MSE values from the k-fold cross validation can
be seen in Figure 1. For all 4 parameter sets the network
was trained on, there did not seem to be any significant
benefit in using more than 3 neurons. For some, the minimum
average MSE value was achieved with only 4 neurons.
The MSE values for the “best” network for each set are
summarized in Table I. As both the linear regression fitting
and network training were performed with cross-validation
and regularization, we feel confident that we have avoided
overfitting the data.

It is note worthy that the predictions on Subject 1 consis-
tently had lower MSE values than the predictions on Subject
2. One explanation for this is that the data for Subject 1
exhibits much higher variance than the data for Subject 2,

as can be seen in the “Constant Prediction MSE” column of
Table I. As the changes in metabolic data over the course
of experiments were much more drastic for Subject 1 than
for Subject 2, the data for Subject 1 may have been able to
better capture the complex relationship between the features
and metabolic data.

Over several runs, we selected features which were present
in 60% of the trials. Results from running the forward
stepwise selection algorithm using our tuned network on the
no-controls data for Subject 1 resulted in the selection of
23 features for a new model (out of the 29 total features).
This new model predicted with an MSE of 0.0761. We also
ran PCA using our tuned network on our data for Subject
1, which gave us more stable results. PCA with 23 features
captured 98.8% of the variance of the data. The new features
found using PCA predicted with an MSE of 0.0700.

IV. DISCUSSION

Our initial approach to the neural network fitting consisted
of a network with same basic architecture as the one de-
scribed above but with more neurons in the hidden layer. We
initially experimented with 2 to 10 neurons in the hidden



TABLE I: Summary of prediction accuracies for k-fold cross validation on network training and linear regression. Constant
Prediction MSE refers to the MSE value that would be achieved by simply predicting the mean of all the observations.

Constant Prediction
MSE

All Features Step & EMG Step Only EMG Only
Lin. Reg NN Lin. Reg. NN Lin. Reg NN Lin. Reg. NN

Subject 1 0.0657 0.0089 0.0089 0.0089 0.0104 0.0200 0.0138 0.0158 0.0118
Subject 2 0.0465 0.0176 0.0301 0.0168 0.0313 0.0217 0.0233 0.0203 0.0199

Fig. 2: MSE over the feature added during forward stepwise
selection.

layer using a standard Levenberg-Marquardt algorithm to
update the weights. In our initial configuration we split the
data randomly in separate train, validation, and testing sets.
The validation sets were initially used to prevent overfitting
and halt the training at the epoch that led to increased
error on the validation set. Although this approach at times
led to tantalizingly low MSE values on the validation and
test set, we found that retraining with slightly different
splits lead to vastly different outcomes. This led us to the
approach described in the methods section of using both
regularization and cross-validation to ensure consistency of
the outcomes and report values that are actually indicative of
the predictive power of the algorithm. Data from all days of
the study was pooled and split randomly for cross-validation
due to the limited number of points. Ideally, a better test
of the predictive power of the algorithms would be to make
predictions on a a full day of data that the algorithm has not
seen.

In order for these results to be generalizable and useful
for other exoskeleton optimization studies, it would be ideal
if we could achieve high accuracy predictions without any
knowledge of the control parameters, since the structure of
the control parameters and an individual’s response to them
may differ between devices. Table I shows that including
control parameters does slightly reduce MSE, but very simi-
lar values can be achieved using only step and EMG data. For
both subjects the EMG data is a significantly better predictor
of metabolic cost than step data. Significantly cleaner EMG
signals are typically achieved with individuals who have

greater muscle definition, which may be the reason for
the discrepancy in EMG predictions seen between subjects.
When the EMG signal is particularly noisy, we may simply
require much more training data than was available for this
study.

The dimensionality of our features were reduced using
PCA and forward stepwise selection methods. Running the
forward stepwise selection algorithm many times allowed us
to select the features which were deemed significant more
consistently. However, testing these new models resulted in
relatively high MSE values. The model built using forward
stepwise selection varied over many trials due to the greedy
nature of the algorithm; the one we selected to produce
Figure 2 was built from selecting features that showed
importance across trials and is most likely not an optimal
model, as shown by its poor predictive performance. PCA
separates the data according to the number of components,
attempting to maximize the variance in each; however, it
does not take the prediction targets into account, which may
explain why the predictions using the newly defined features
were poor.

After testing different datasets, we found that all of the
models considered perform with relatively the same accuracy
using data with controls compared to data without controls
as features. It can also be determined that the EMG data
can be significantly better predictors than the step features
alone. Therefore, we could potentially do well in predicting
metabolic cost using EMG alone.

The results of the predictions and model selection process
show that it is difficult to use the data to predict the metabolic
cost of different individuals. In the feature reduction stage,
some features were more significant for an individual com-
pared to others and therefore resulted in different features
selected. For instance, for Subject 1, step width was an
important feature that showed up much more often in the
trials, and for Subject 2, left and right peak force were
consistently significant. Another observation from the feature
selection step was that for certain individuals and for certain
features which consider both the left and right sides of the
body (e.g. right and left ground force), features from mostly
one side appeared as significant features. This may imply
that capturing the same type of data from both legs may
be redundant and unneccesary. A potential improvement to
the dataset could therefore be individual-specific features,
which, in addition to collecting data on more individuals,
could improve generalization of the predictions.

The variations in predictions between the two subjects
indicates that trying to create a network to generalize these



predictions for multiple individuals would likely yield poor
predictions. However, with significantly more subjects and
the inclusion of subject specific parameters such as height,
age, weight, and general fitness, it may be possible to create
a generalized predictor model. Additional kinematic data
could also be collected during experiments using wearable
Inertial Measurement Units (IMUs), which would augment
the feature space and potentially improve accuracy.

V. CONCLUSIONS & FUTURE WORK

In the best case, our algorithms were able to achieve an
MSE values on the normalized metabolic rate of 0.0089 cor-
responding to approximately 10% error. This is a significant
improvement over a constant prediction, which would yield
an error of approximately 25%. It is also a significant step
towards the goal of 5% accuracy, which can be considered
as the baseline noise level for metabolic data.

Future work would include significantly more subjects
in the study and perhaps the inclusion of more kinematic
data either from IMUs or from a motion capture system. As
further increasing the feature space will increase our chances
of overfitting, a significantly larger volume of data would
need to be recorded. Currently, the large number of sensors
used in this experiment may be prohibitive for future work.
Given the quality of EMG based predictions, it would be
value to identify which EMG signals contribute the most to
the predictions.
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