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MOTIVATION
Standard lossy image compression techniques such as JPEG:

» are not data-specific - do not make use of the semantic
relations among the images in a specific dataset

» thus, cannot achieve the best possible compression rates
OUR SUGGESTED APPROACH

1. Train a GAN on a dataset, capturing the semantic relations in
that dataset

2. Gan Reversal: recover the latent space representation of an
Image from the GAN generator [1]

» Experiment with different loss functions (L1, L2, SSIM)
3. This latent vector will be the compressed representation
4. To decode image, pass latent vector through GAN generator
OUR AIM
A better extreme-compression scheme with two main objectives:

1. scheme must achieve higher compression rates than other
standard lossy image compression techniques

2. reconstructed images must still be of high perceptual quality

and true to their originals = use suitable metrics to measure
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DATA

ﬁ Our model 1s trained on the well-known CelebA benchmark x
dataset [2]
» Consists of > 200K celebrity images

o Our test set consists of 10 images from CelebA

» Our approach is not general yet, so we must manually adjust
parameters = test set small, but promising results

o We crop and center the images to 128x128 for training and
testing

o (Left) Animage that the GAN outputs for some latent vector
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/ BASELINE MODELS \

o KNN: K=4, cannot achieve extreme compression while maintaining good
quality
o JPEG (optimized): a popular lossy image compression technique

» We use two values for quality parameter: 1% and 10%

KNN (K=4) JPEG: 10%, 1% §

OUR MODEL: GAN REVERSAL
First train a GAN on the dataset = captures the semantic relations in the dataset

Using Gradient Descent (with some modification), find a latent vector which
when passed through the trained GAN Generator, is closest to the original
Image in terms of some loss function (we try L1, L2, and SSIM)
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METRICS

o Compression Magnitude Measure: Bits per Pixel (BPP)

o Traditional Similarity Measures: Mean Square Error (MSE), Peak Signal to
Noise Ratio (PSNR)

o Perceptual Quality Measure: Structural Similarity Index (SSIM) [3]

» SSIM is a perception-based model that considers image degradation as perceived
change in structural information
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ﬁ Below is a summary of the performance of the baselines and oh
approach “GAN Reversal”, based on the proposed metrics

KNN
(K=4)
JPEG
(10%)
JPEG

(1%)

GAN

Reversal
(Our Approach)

1.486 23.012 342.46 0.7145

0.4848 26.161 161.87 0.7711

0.2176 20.465 589.15 0.5280

0.2152 21.192 540.06 0.7073
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CONCLUSION AND FUTURE WORK

~

/o The main contributions of our project are:

» Introducing GAN Reversal as a novel tool for image
compression

» Using SSIM as a custom loss function that yields much better
performance when recovering the latent vector

o Our results indicate that using GAN reversal, we can perform
extreme compression while maintaining acceptable perceptual
quality compared to other approaches like JPEG

o NEXT STEPS
» Try other loss functions when recovering latent vector

» Try to make latent vector distribution better follow the
uniform distribution to improve GAN output

\ > Increase test set size
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