

Generative Neural Network Based Image Compression

INTRODUCTION

MOTIVATION

Standard lossy image compression techniques such as *JPEG*:

- \blacktriangleright are **not** data-specific \rightarrow do **not** make use of the semantic relations among the images in a specific dataset
- \succ thus, cannot achieve the best possible compression rates

OUR SUGGESTED APPROACH

- 1. Train a GAN on a dataset, capturing the semantic relations in that dataset
- 2. Gan Reversal: recover the latent space representation of an image from the GAN generator [1]

Experiment with different loss functions (L1, L2, SSIM)

- 3. This latent vector will be the compressed representation
- 4. To decode image, pass latent vector through GAN generator

OUR AIM

A *better extreme-compression scheme* with two main objectives:

- 1. scheme must achieve higher compression rates than other standard lossy image compression techniques
- 2. reconstructed images must still be of high perceptual quality and true to their originals \rightarrow use **suitable metrics** to measure that

DATA

- Our model is trained on the well-known **CelebA benchmark** dataset [2]
- Consists of > 200K celebrity images
- Our test set consists of 10 images from CelebA
- Our approach is not general yet, so we must manually adjust parameters \rightarrow test set small, **but promising results**
- We crop and center the images to **128x128** for training and testing
- (Left) An image that the GAN outputs for some latent vector (Right) An uncompressed image that is not a GAN output

GAN OUTPUT

NEW IMAGE

- quality

- Compression Magnitude Measure: Bits per Pixel (BPP)
- Traditional Similarity Measures: Mean Square Error (*MSE*), Peak Signal to Noise Ratio (*PSNR*)
- **Perceptual Quality Measure:** Structural Similarity Index (SSIM) [3] SSIM is a perception-based model that considers image degradation as *perceived* change in structural information

E. Meltem Tolunay, Ahmad Ghalayini Email: {meltem.tolunay, ahmad2}@stanford.edu

MODELS

BASELINE MODELS

 \circ KNN: *K*=4, cannot achieve extreme compression while maintaining good

• **JPEG (optimized):** a popular lossy image compression technique We use two values for *quality* parameter: 1% and 10%

JPEG: 10%, 1%

OUR MODEL: GAN REVERSAL

 \circ First train a GAN on the dataset \rightarrow captures the semantic relations in the dataset • Using Gradient Descent (*with some modification*), find a latent vector which when passed through the trained GAN Generator, is closest to the original image in terms of some loss function (we try L1, L2, and SSIM)

METRICS

$$ext{SSIM}(x,y) = rac{(2\mu_x\mu_y+c_1)(2\sigma_{xy}+c_2)}{(\mu_x^2+\mu_y^2+c_1)(\sigma_x^2+\sigma_y^2+c_2)}$$

approach "GAN Reversal", based on the proposed metrics

Method	BPP	PSNR	MSE	SSIM
KNN (K=4)	1.486	23.012	342.46	0.7145
JPEG (10%)	0.4848	26.161	161.87	0.7711
JPEG (1%)	0.2176	20.465	589.15	0.5280
GAN Reversal (Our Approach)	0.2152	21.192	540.06	0.7073

CONCLUSION AND FUTURE WORK

- The main contributions of our project are:
 - > Introducing GAN Reversal as a novel tool for image compression
 - performance when recovering the latent vector
- Our results indicate that using GAN reversal, we can perform quality compared to other approaches like *JPEG*
- NEXT STEPS

 - uniform distribution to improve GAN output
 - Increase test set size \geq

[1] Zachary C. Lipton and Subarna Tripathi. Precise recovery of latent vectors from generative adversarial networks. CoRR, abs/1702.04782, 2017. URL http://arxiv.org/abs/1702.04782. [2] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In Proceedings of International Conference on Computer Vision (ICCV), December 2015. [3] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from error visibility to structural similarity. IEEE transactions on image processing, 2004.

Stanford ENGINEERING Computer Science

CS 229: Machine Learning

RESULTS

• Below is a summary of the performance of the baselines and our

→ Using *SSIM* as a custom loss function that yields much better extreme compression while maintaining acceptable perceptual

Try other loss functions when recovering latent vector Try to make latent vector distribution better follow the

REFERENCES