Overview
- Simple, explicit measure of contextual word importance
- Supports tiny contexts (10+ sentences)
- Uses document word vector-cloud properties
- Contextually significant words define meaning
- Weighted bag of words model:
 - Substantially outperforms state-of-the-art for subjectivity analysis and paraphrase detection
 - Comparable to SoA for other transfer learning tests
- Applications:
 - A better sentence vector baseline
 - Easy sentence/document summarizer via pathfinding
 - Contextual stop word identification
 - Improved (and context-aware) cosine distance

Current Implementation Limitations
- Long Short-term Memory (LSTM) Networks:
 - Limited because short-term
 - Document-specific context ⇒ overfitting
- tf-idf sentence embedding (vector) baseline
 - Rarer words are more important
 - Essentially sum of tf-idf weighted word vectors
 - Requires large document, no handling of out-of-context words, stratified for rare words, ignores word similarity
- State-of-the-art global context approaches:
 - context vectors, deep structures, etc. (Black boxes)
 - Unsupervised barely outperform tf-idf baseline

Motivation
- Knowing what you’re reading affects interpretation
- tf-idf baseline requires a large context dataset to work
- But people don’t need a ton of text to establish context
 - Newspaper articles
 - Short stories
- Currently no simple baseline for global context

Datasets and Evaluation
- Words / Clauses
 - Stanford Sentiment - Diverse context 9k examples
 - 300 dimensional pretrained GloVe (42b CC) - No out-of-vocabulary keys
- Sentences
 - SentEval train/dev set: Variety of transfer learning contexts
 - fastText vcs: 600b token CC, out-of-vocab support

Algorithms: Word Vector Clouds
- Replacing tf-idf
 - Mahalanobis distance: Normalizes for stdev and covariance
 - Distance from document word-vector cloud
 - Needs only document word-vector covariance and average
 - Works with tiny data, since word vec dimensions are normal
- Better and Context-Aware Cosine Distance:
 - \[\cos C = \frac{x^T y}{\sqrt{x^T x \cdot y^T y}} \]
- Wikipedia page for “green”
- Article about Stanford
- vec(“cardinal”) vs vec(“red”)
- \(d = 0.909 \)
- \(d = 0.943 \)

Algorithms: Sentence Embeddings
- Unified Clause-Word Vector Space
 - GloVe space including both two word clauses and words
- Importance relates clause vecs and constituent words
- Sigmoidal Sentence Embeddings
 - Calculate document average word vector and covariance
 - For sentence, calculate each word’s importance
 - Divide by double the sentence average
 - (Opt.) Ignore words in closest 20% of doc importances for
 - Corresponds closely to stop words
 - Weight by sigmoid of relative importances

Algorithms: Sentence Embeddings
- Meaning Subtraction
 - \(\text{vec(sentence)} = \Sigma w(\text{vec} _\text{word}_n) \cdot \text{vec} _\text{word}_n \)
 - Given a sentence vector and one subsentence vector, can calculate other subsentence vector
 - Assume \(w(\text{vec} _\text{word}_n) \) is the avg distance, solve for vec, repeat
 - Takes 3-5 iterations to converge to several decimal places
- Path-finding for Meaning Extraction
 - Calculate the remaining subsentence vector
 - If within m-cosine distance radius, return sentence
 - Find the new words closest to the subsentence vector
 - Enqueue the sentence with the closest words appended

Conclusion and Future Directions
- This technique should replace the tf-idf baseline
- Can global context help generate word vectors?
- Implications for how we process information
 - Appears to suggest we overvalue slightly more salient information when combining meanings
- Linguistic implications:
 - Where does syntax come into play?
 - Can a rule-based system restricting the subset of closest words that can be chosen as the next word generate grammatical sentences with the unembdding?
- Neurological implications: Can we measure the importance (salience) of words and sentences and relate them?