

Appliance-level Residential Consumer Segmentation from Smart Meter Data

Introduction

Background:

Deployment of distributed energy resources (e.g. solar, electric vehicles) is driving greater uncertainty in power demand, requiring expansion of residential demand response programs (curtailment/shift in power consumption in response to prices or incentives)

Objective:

- Perform consumer segmentation for DR program targeting based on appliance-level power consumption
- Segment consumers based on three characteristics:

Identify consumer clusters with similar temporal use patterns

Variability

Identify consumer clusters with consistent use patterns Flexibility

consumption during critical peak pricing periods

Dataset and Features

Dataset:

- Pecan Street database [1]
- 3 years with 1 minute resolution: training (2014), dev (2015), test (2016)
- Critical peak pricing trial [2] during 12 days in summer 2013 (32 homes)

Features:

- <u>Availability</u>: Empirical hourly start-time distribution (\mathbb{R}^{24})
- Variability: Hourly load profile normalized by daily energy consumption (\mathbb{R}^{24})

Appliance	# of homes	Analysis
Air conditioner	129	V
Refrigerator	103	V
Dishwasher	82	V, A
Clothes washer	80	V, A
Dryer	62	V, A
Electric vehicle	29	V, A
Water heater	19	V, A
Clothes washer + dryer	13	V, A
Pool pump	9	V
Total home demand	132	V, F
	·	

= variability, A = availat	oility, F	= fle	kibility
17			/

Flexibility Features (per home)	Units
Home size	ft²
Year built	year
# of stories	
Mean 6-hr energy consumption (24:00-6:00, 6:00-12:00, 12:00-18:00, 18:00-24:00)	kWh
Mean, 10%ile, 90%ile of daily energy consumption above baseload	kWh
Mean and variance of hourly power	kW
Mean, 10%ile, 90%ile maximum and minimum daily energy consumption	kWh
Entropy of load profile (from variability analysis)	

Lily Buechler and Zonghe Chua

{ebuech, chuazh}@Stanford.edu

Department of Mechanical Engineering, Stanford University

Methods

Availability:

Methods:

- K-Means clustering Euclidean distance measure
- Hierarchical clustering Ward's linkage with symmetrized KL divergence distance measure:

$$\sum_{KL} (P(h)|Q(h)) = \sum_{i} P(i) \log\left(\frac{P(i)}{Q(i)}\right) + \sum_{i} Q(i) \log\left(\frac{Q(i)}{P(i)}\right)$$

- Gaussian Mixture Model (GMM)
- Latent Dirichlet Allocation (LDA)
- **Evaluation metrics:**
- Increase in availability:
- Completeness score: $c = 1 - \frac{H(K|C)}{H(K)}$

$$\sum_{i=1}^{|K|} \frac{n_{c,k}}{n} \log\left(\frac{n_{c,k}}{n_c}\right) \qquad H(K) = -\sum_{i=1}^{|C|} \frac{n_k}{n} \log\left(\frac{n_k}{n_c}\right)$$

Variability:

K-Means clustering – assign load profiles to clusters

H(K|C) =

- Entropy of load profile assignment distribution: $S = -\sum_{i} P(i) \log(P(i))$
- Hierarchical clustering segment homes by load profile distribution

Flexibility:

- Linear regression (LR) with recursive feature selection
- KNN regression
- Random forest (RF) with recursive feature selection

Results

Flexibility:

Train	Dev	Test
MSE	MSE	MSE
(n=20)	(n=6)	(n=6)
0.0346	0.0709	0.0307
0.0148	0.0589	0.0608
1.680	0.7855	0.4466
	Train MSE (n=20) 0.0346 0.0148 1.680	TrainDevMSEMSE(n=20)(n=6)0.03460.07090.01480.05891.6800.7855

Most important features

Mean baseload consumption

12

Mean energy consumption above baseload

16

20

0.8

0.4

Results

Conclusions and Future Work

Conclusions:

- Consumer segmentation can yield up to a x2 increase in load availability during specific hours
 - Appliance-level cluster assignments can differ significantly from aggregate load cluster assignments, requiring separate segmentation analysis Linear regression with feature selection yields highest accuracy for predicting consumer responsiveness to price

Future work:

• Incorporate additional factors (day of week, season) into availability analysis • Perform analysis on larger dataset

References:

[1] Pecan Street Inc. (2017) Dataport from pecan street. [Online]. Available: https://dataport.cloud/ [2] *Technology solutions for wind integration in ERCOT*. Center For The Commercialization Of Electric Technology, Austin, TX (United States), 2015.

Availability: