

Motivation and Overview

- WFI: Detector system on Athena (an satellite observatory)
- **Purpose:** Distinguish between particles (protons) and X-ray photons. Eliminate particle background.
- Input: 500 by 500 gray scale image
- Output: 500 by 500 gray scale image

Data

- GEANT4: Particle simulation database [1]
- **SIXTE:** X-ray photon simulation database [2]

Figure: Typical X-ray Photon patterns

Figure: Typical Particle patterns

Figure: Train samples for the neural network

Reducing the ATHENA WFI background

Xuehao Ding

xhding@stanford.edu

Models

First Step: DBSCAN [3] (Unsupervised Learning)

- Core point: A point that has at least minPts neighbor points within its ϵ radius.
- Border point: A point within the ϵ radius of a core point but has less than minPts other points within its own ϵ radius.
- Noise point: A point that is neither a core point or a border point.

Ν

Experiment

1000 test samples, averaged error: 0.028

Figure: The left panel shows the image before processing, the right panel shows the image after processing.

econd Step: No	eural Network [4]
Preprocessing:	Heaviside step function $\mathcal{H}(x)$

• First Layer: Flatten Layer. $2d \rightarrow 1d$ • Second Layer: Fully Connected Layer. 256 Nodes. Activation: Relu

Last Layer: Fully Connected Layer. 1 Node. Activation: Sigmoid

$$a^{[1]} = max\{0, W^{[1]T}x_{flat}\}$$
(1)

$$p(y=1) = \frac{1}{1 + exp(-W^{[2]T}a^{[1]})}$$
(2)

The energy deposit of a particle is most probably much higher than that of a X-ray photon. The step function preprocessing tremendously improves the accuracy of the neural network, which suggests that **shape** is the key feature for the network to distinguish between particles and photons. In contrast, most existing works use classical algorithms that pay more attention to the **energy value** of pixels to distinguish [5].

Λ		
/ \	`	
	/	20.00
	1	2000
		1800
		1000
	-	1600
		1400
		1400
	-	1200
		1000
		1000
	-	800
		60.0
		000
		400
		200
		200
		0
	/	
	r	
V		

[+]	to ph Sp
[2]	W
	sir In Ra
	an
[3]	Es alg
	sp 34
[4]	Ho
	ph co

Discussions

Future Work

• Run the algorithm on real dataset • Analyze overlapping photon and particles.

References

- [1] Agostinelli, Sea, et al. "GEANT4-a simulation olkit." Nuclear instruments and methods in hysics research section A: Accelerators, pectrometers, Detectors and Associated quipment 506.3 (2003): 250-303.
 - Vilms, Jorn, et al. "ATHENA end-to-end mulations." Space Telescopes and nstrumentation 2014: Ultraviolet to Gamma lay. Vol. 9144. International Society for Optics
 - nd Photonics, 2014.
 - Ster, Martin, et al. "A density-based lgorithm for discovering clusters in large patial databases with noise." Kdd. Vol. 96. No. 4. 1996.
 - opfield, John J. "Neural networks and hysical systems with emergent collective omputational abilities." Proceedings of the national academy of sciences 79.8 (1982): 2554 - 2558.
- [5] von Kienlin, Andreas, et al. "Evaluation of the Athena/WFI instrumental background." Space Telescopes and Instrumentation 2018:
 - Ultraviolet to Gamma Ray. Vol. 10699.
 - International Society for Optics and Photonics, 2018.