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neural nets have depth 1, width 10; random forests have 500 trees
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Introduction

Encoding Element 
one-hot

Group 
one-hot

Coulomb 
Matrix

Coulomb 
svals

Coulomb + 
group one-hot

Augmented 
Coulomb

LogReg
Misclass Error 25.7% 27.8% 39.5% 42.8% 34.0% 46.5%

ROC Area 0.801 0.776 0.650 0.597 0.720 0.553

Neural 
Net

Misclass Error 24.8% 26.6% 42.3% 44.9% 44.4% 42.1%

ROC Area 0.822 0.808 0.606 0.569 0.578 0.600

Random 
Forest

Misclass Error 23.8% 24.9% 31.1% 30.9% 27.6% 31.2%
ROC Area 0.842 0.828 0.748 0.754 0.794 0.745

Encodings tested: 
— One-hot representation of element 
— One-hot representation of atomic group 
— Coulomb Matrix 
— Singular values of the Coulomb Matrix 
— Coulomb matrix AND one-hot 
representation of group 
— Coulomb matrix augmented by its non-
degenerate permutations 
— Singular values of Coulomb matrix AND 
one-hot representation of element

Encodes the Coulomb (electrostatic) 
potential between atoms

Cij =
ZiZj

|ri − rj |
, i ≠ j
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Dataset principle components 
(element one-hot encoding) 

The model input for each material was a list of the atoms in the material’s 
unit cell and their positions. This information is not a suitable feature set 
for machine learning, as positions are degenerate in coordinate axis.

Problem: A material’s electronic properties—and technological utility—
depend on its band gap. Band gaps are notoriously difficult to compute 
from first principles and computationally intense to approximate, so their 
prediction represents a challenging yet consequential application for ML. 
We set out to predict band gap size with only elemental composition 
and atomic positions by training learning models on computationally 
generated datasets.

Zi

:  atomic position ri
:  atomic number 

Encoding Element 
one-hot

Group 
one-hot

Coulomb 
Matrix

Coulomb 
svals

Coulomb + 
group one-hot

Augmented 
Coulomb

C svals + 
elem 1-hot

LinReg
RMS Error (eV) 1.348 1.492 1.486 1.539 1.223 1.454 1.119

Median Norm. Error 0.648 0.801 7.521 8.198 3.977 6.845 3.773

Neural 
Net

RMS Error (eV) 0.956 1.29 1.86 1.77 1.39 1.36 1.81

Median Norm. Error 0.484 0.654 1.53 2.32 3.26 6.79 1.94

Random 
Forest

RMS Error (eV) 0.910 1.18 1.07 1.03 0.900 0.955 0.922
Median Norm. Error 0.363 0.486 0.802 0.779 0.598 1.51 0.493

Material Type:           Gap Size: 
Metals                        Small ( 0 or negligible)

Nonmetals 


Semiconductors     Intermediate

Insulators                Large ( > 3.2 eV)

Challenges: 
• Domain knowledge for feature 

engineering

• Large space of possible materials


• differing crystal structures

• differing # of atoms/unit cell


• Size/consistency of available datasets

Pipeline for predicting gaps

non-metals metals

regression

encoding

gap size

classification

input

Performance of the feature encodings 
neural nets have depth 1, width 10; random forests have 200 trees

Data set: JARVIS Density 
Functional Theory database 
of 3D materials (14752 non-
metals and 8703 metals)

F1 score: 0.767

RMS Error: 0.924 eV
Median Normalized  

Error: 0.364

          True 
Pred           Metal Nonmetal

Metal
(True neg. 

rate)

0.694

(False 
neg. rate)


0.188

Nonmetal
(False 

pos. rate)

0.306

(True pos. 
rate)

0.812

Metrics: misclassification error; error under receiver operating curve Metrics: root mean square error (eV); median normalized error

Pipeline: the regression stage operated only on predicted nonmetals from the 
classification stage. Both stages used a one-hot element encoding as features. 
A tuned random forest classifier was chosen for the 1st stage, and a tuned 
neural network (ReLU activation; linear output) for the 2nd stage.

Regression stage results
Reported on true positive examples
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Small-gap insulators: nearly half 
of the nonmetals in the dataset 
had gaps between 0.01 eV and 
0.1 eV. The classifier model 
struggled with these materials; 
removing them decreased the 
misclassification error to 10.6%.

Feature encoding: the one-hot 
representation of constituent elements in 
compounds performed best in both stages. 


A one-hot representation of element’s groups 
performed well for classification but not for 
regression. Physically, an atom’s group 
determines its valance, which is important for 
predicting its metallicity, whereas the gap 
magnitude depends on the atomic number 
(because of electric screening)—information 
that the group encoding removes. 


The Coulomb matrix’s singular values 
contains this information, explaining why the 
Coulomb matrix singular values + group one-
hot encoding performed reasonably well in 
the regression stage.
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Random forest classifier development
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Performance: following literature, 
we used RMS error as a metric 
for the regression stage 
performance; we chose a neural 
network accordingly. A random 
forest regressor outperformed the 
neural net in median normalized 
error (0.318 versus 0.544) but had 
higher RMS absolute error (0.948 
eV versus 0.881 eV).
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