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Our network is based on a PyTorch example by D. Kingma and C. Botha [4,5].

Encoding: 80 hidden neurons + RelLU : . :
Latent Sgace; 3 dimensions 4 A Because the VAE Is robust to noise, we attempt to find

Decoding: 80 hidden neurons + sigmoid 04 | optimized devices by reconstructing the target spectrum
Loss: Reconstructed MSE + KL divergence with a random device.

Recon. Accuracy § 03 |
Model MSE MSE | | e ~

PCA 4.89 17.87

We use a variational autoencoder (VAE), which encodes a
representation of data in a latent space using neural networks [2,3],
to study thin film optical devices. VAEs can learn physics of thin film
devices, generate new devices, and show potential for designing
devices with arbitrary spectral responses.
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dimensional latent space. New 5(\/\\ - \\//Qy Improved accuracy, extend VAE model to more
The features consist of the five layer thicknesses and the devices and their predicted spectra \ '\\, | complicated optical devices
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