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The goal of this project was to implement a system 
that takes in observed data and outputs a partial 
differential equation that describes the data. The 
system should
• Report results in terms interpretable by a human
• Be robust to noisy data
• Operate on small amounts of data

Objective

Synthetic noisy data was computed for two model 
processes from their exact solutions, with varying 
resolution and amount of noise

Model and Feature Selection Results
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Advection-Diffusion 
Equation:
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Adding Noise

2D Euler Equations:

To add noise at a level 2, add AGWN at each point

Every PDE can be represented as a linear 
combination of nonlinear features: ⁄!" !# = =8 >8(")

The candidate features are constructed using a 
domain specific grammar. Expressions are sampled 
with a preference for concise statements

Feature Search Algorithm
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for '8 in cols(E):
compute FGHI
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The system successfully identifies the model 
processes with sufficient data. The system is 
robust to noise for the 1D process while the 2D 
process performed worse. Both processes were 
identified in the low-data limit with only moderate
parameter error.

• Improve feature search algorithm to include 
stochasticity through genetic algorithms

• Check robustness to different types of noise
• Apply to real world data of fluid flows
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Points (1D) 100 50 15 5
Adv-Diff %NOO = 0.03%,

)NOO = 0.03%
%NOO = 0.08%,
)NOO = 0.05%

%NOO = 0.7%,
)NOO = 0.3%

%NOO = 7%,
)NOO = 3%

Euler :NOO = 0.001%,
VNOO = 0.002%

:NOO = 0.005%,
VNOO = 0.006%

:NOO = 0.06%,
VNOO = 0.06%

:NOO = 0.6%,
VNOO = 0.6%

Noise 1% 5% 15% 50%
Adv-Diff %NOO = 13%,

)NOO = 7%
%NOO = 14%,
)NOO = 7%

%NOO = 24%,
)NOO = 5%

%NOO = 70%,
)NOO = .5%

Euler :NOO = 0.3%,
VNOO = 2%

:NOO = 0.1%,
VNOO = 7.4% N/A N/A

Correct Identification Correct process didn’t have highest FGHI
& Not Identified

Noise was filtered using total variation denoising


