A Data-Driven Approach for Predicting Elastic Properties of Inorganic Materials

Camila Cendra (ccendra@stanford.edu)

Scope

- Materials discovery from first-principle computations is expensive^[1,2].
- Identifying mechanical properties of new materials is crucial to determine their potential functionality.
- The elastic modulus measures a material's resistance to deformation.
- We use machine learning (ML) methods to predict the elastic modulus (y) from common chemical properties, bypassing the need to use more expensive computational methods.

Data and Features

- Dataset^[3] consists of 4208 x 136.
- Y data for training is elastic modulus

- 3039/537/632 train/dev/test split. Features (X) of the model are 135 descriptive attributes.
 - > 118 encode chemical composition
 - 17 encode heuristic quantities^[2]
 - ✤ i.e.: electronegativity, valence electrons, atomic mass and size.
- X was standardized to zero mean and unit variance using training data.

Supervised Learning Models

$$\|w-y\|_2^2+lpha\|w\|_2^2$$

Parameters

$$\hat{U}(x) = rac{1}{2}||\hat{y} - y||_2^2 + rac{lpha}{2}||W||_2^2$$

Parameters α: 0.0001

- l_rate: 0.001
- activation: relu
- output: identity
- 100 neurons in hidden layer

Parameters

- Number trees: 100
- Maximum depth: 15

True Elastic Modulus (GPa)

Resı	alts		
		RMSE	
	•		4.0

Model	train	test	10-fold CV	train
LR	35	42	36 ±16	0.88 [< 0.0
MLP	28	37	32 ± 16	0.92 [< 0.0
RFR	27	38	32 ± 16	0.93 [< 0.0

Feature Importance: as determined by 10-fold recursive feature elimination with cross-validation (RFECV), heuristic and compositional descriptive attributes are both useful.

Discussion

- Using descriptive attributes, which are readily obtained analytically for any given composition, we have predicted the elastic modulus of a diverse set of materials with high accuracy.
- 10-fold CV shows that the prediction performance of the ML models is consistent.
- Both heuristic and compositional features contribute to the models' high performance.

Future Work and References

- Predict other crucial mechanical properties, such as shear modulus and fracture toughness, using the developed methodology.
- Implement advanced ensembling algorithms to achieve higher predictive accuracy.

References:

[1] B. Meredig, A. Agrawal, S. Kirklin, J. E. Saal, J. W. Doak, A. Thompson, K. Zhang, A. Choudhary, C. Wolverton, Phys. Rev. B - Condens. Matter Mater. Phys. 2014, 89, 1.

[2] M. de Jong, W. Chen, H. Geerlings, M. Asta, K. A. Persson, *Sci. Data* 2015, 2, 150053.

[3] Dataset obtained from the Open Citrination Platform and is publicly available. https://citrine.io/research/open-citrination-platform/

