HYBRID DISTRIBUTIONAL AND DEFINITIONAL WORD VECTORS Haiyuan Mei and Ranjani Iyer Stanford University, Department of Computer Science

- tasks.
- exploration. [1]
- tion.

MODEL

- **Baseline LSTM:** A two-layer LSTM encoder, Simple linear decoder and NLL loss, where the encoder layer hidden output denotes the final definitional word vector.
- **Seq2Seq:** A two-layer LSTM encoder with dropouts plus a two layer LSTM decoder without attention.
- Variational AutoEncoder: Adapted VAE with single-layer LSTM encoder and decoder with Gaussian prior regularizer[3].

 $\mathcal{L}(\theta; x) = -\mathrm{KL}(q_{\theta}(\vec{z}|x)||p(\vec{z}))$ $+ \mathbb{E}_{q_{\theta}(\vec{z}|x)}[\log p_{\theta}(x|\vec{z})]$ $\leq \log p(x)$.

TRAINING

• Dataset: GloVe [4]. All models are trained on pretrained 300d GloVe vectors based on a crawl of 2014 Wikipedia.

Definitions retrieved from **WordNet**[5].

- HybridVec Implementation: Pytorch, Adam optimizer, Xavier initialization, hidden size 150, learning rate of 1e-4, batch size 64, 15/20 epochs.
- Intrinsic evaluation: Word embedding benchmarks [2]
- OpenNMT-py demo(10k) • NMT Dataset: dataset. Only for comparasion between GloVe and HybridVec.

FUTURE WORK

• Additional plans for model: greater regularization, inputting multiple definitions, inputting sentence structure, try other embeddings. • Continue the exploration of combining different word vectors for downstream NLP tasks.

RESULTS

• Word embeddings benchmarks for GloVe, LSTM Baseline and Seq2Seq model. LSTM baseline model is roughly at the level of distributional method; Seq2Seq model shows very limited evidence of such capability[2]:

	BLESS	ESSLI_1a	MEN	MTurk	RG65	SL999	WS353
Glove	0.82	0.75	0.737465	0.633182	0.769525	0.3705004	0.543326
Baseline glove	0.55	0.659091	0.51071	0.4226407	0.656402	0.3678366	0.449105
Baseline rand	0.52	0.613636	0.447908	0.3181051	0.6444908	0.3288122	0.35609
S2S enc mean	0.275	0.522727	0.106169	0.1370724	0.0890822	-0.018433	0.051959

• GloVe: WEB benchmark for GloVe vectors

• Baseline glove: WEB benchmark for LSTM baseline model initialized from GloVe • Baseline rand: WEB benchmark for LSTM baseline model initialized randomly • s2s enc mean: WEB benchmark for Seq2seq model with encoder output mean as the def vec.

• OpenNMT compare performance improvements using LSTM baseline vector and GloVe:

	No pretrained	LSTM Baseline	GloVe		
PPL	7.47	6.69	4.84	10k nmp demo se Glove has most p	
ACC	56.29	58.4	64.32		
EU	0.0093	0.0137	0.0199	10K nmt training as above perplex	

ANALYSIS

• LSTM baseline vectors tend to cluster in feature space. Need to train from a broader source. • Glove makes use of feature space more efficiently, grasp more sutle meaning of words.

3D tSNE: LSTM Baseline vectors is likely to cluster

REFERENCES ford, CA, 2016 penchmarks, 2015.

∠]	Stariisiaw Jasti
	embeddings-b
3]	Samuel R. Bow
	Bengio. Gene
	Natural Langua
4]	Jeffrey Pennin
	word represen
5]	George A. Mi
-	

description

entence trained 1 epoch, with/o pretrained word vectors. positive impact, LSTM baseline also exhibites positive impact demo 10 epochs, eval on 3k nmt val sentences, similar resul city and accuracy

GloVe uses feature space more efficiently

[1] Andrey Kurenkov and Duan. Duan. Def2vec: Learningword vectors from definitions. Stan-

[2] Stanislaw Jastrzebski. Word embeddings benchmark. https://github.com/kudkudak/word-

wman, Luke Vilnis, Oriol Vinyals, Andrew M. Dai, Rafal Jozefowicz, and Samy erating sentences from a continuous space. SIGNLL Conference on Computational age Learning, 2016.

ngton, Richard Socher, and Christopher D. Manning. Glove: Global vectors for ntation. In Empirical Methods in Natural Language Processing (EMNLP), 2014. iller. Wordnet: A lexical database for english. Commun. ACM, 38(11):39-41,