
An AI Approach to Automatic Natural Music Transcription

Michael Bereket
Stanford University

Stanford, CA
mbereket@stanford.edu

Karey Shi
Stanford Univeristy

Stanford, CA
kareyshi@stanford.edu

Abstract

Automatic music transcription (AMT) remains a fundamental
and difficult problem in music information research, and current
music transcription systems are still unable to match human per-
formance. AMT aims to automatically generate a score represen-
tation given a polyphonic acoustical signal. In our project, we
approach the AMT problem on two fronts: acoustic modeling to
identify pitches from a frame of audio, and establishing a score
generation model to convert exact piano roll representations of
audio into more ‘natural’ sheet music. We build an end to end
pipeline that aims to convert .wav classical piano audio files into
a ‘natural’ score representation.

1. Introduction

Music transcription is still considered to be a difficult task even
by human experts. For polyphonic audio, AMT faces a number
of challenges: the acoustical signal of concurrent notes can have
complex interactions, there can be large variations in audio sig-
nals between instruments, and the combinatorial output space is
incredibly large. However, recent progress has been made with
AMT through the use of neural networks. In the 2016 paper “An
End-to-End Neural Network for Polyphonic Piano Music Tran-
scription”, Sigtia, Benetos, and Dixon describe a hybrid recurrent
neural network (RNN) model for polyphonic AMT of piano mu-
sic, which achieves state of the art performance [13]. Their model
uses a Convolutional Neural Network (CNN) to tackle acous-
tic modeling (identifying pitches from a frame of audio) and an
RNN based music language model (understanding the temporal
structure of musical sequences for piano roll generation). In our
project, we break down our music transcription system into two
parts: acoustic modeling for pitch identification in polyphonic
audio, and score generation for converting the resulting piano roll
representation into ‘natural’ sheet music.

For acoustic modeling, we aim to transform polyphonic au-
dio of classical piano music into a piano roll representation by
predicting the presence of notes in each time frame. The input
to our acoustic model is a time-frequency representation of au-
dio frames. We then use a Convolutional Neural Network (CNN)
to output a predicted set of notes that are present in the relevant
audio frame. Our model closely follows the work of Sigtia et al.
Thus, for each time slice in a given song, we can predict the corre-
sponding notes, and by aggregating the outputs, we can construct
our desired piano roll representation.

Music is often performed with an element of emotional ex-

pressiveness; as a result, the observed rhythms and tempos in the
audio recordings of piano performances are often irregular. How-
ever, the outputs of our acoustic model provide us with exact rep-
resentations of our original audio, corresponding precisely to the
manner in which the piano piece was performed. If a score were
to be exactly generated from this output without further trans-
formation, unnatural and inconsistent patterns may arise, and it
would not likely resemble a human experts transcription due to
these irregularities. We tackle this issue by constructing a ‘natu-
ral’ score generation model consisting of two phases: tempo se-
lection with rhythm bucketing, and smoothing. Tempo selection
handles the matter of defining a tempo which we can visualize our
score relative to (e.g. the length of quarter-note or dotted-eighth-
note is only well-defined when a particular tempo is assumed).
We encode our piano roll representation as note events, and we
use a linear model which takes in a song segments note events as
input and predicts the top k candidate tempos for that segment.
Our smoothing step utilizes a Hidden Markov Model (HMM) to
predict the original rhythm buckets (as written by a composer)
given a series of observed rhythm buckets.

We completed this project for both CS221 and CS229 and have
focused on the acoustic modeling for this class and the score gen-
eration task (tempo selection with bucketing and smoothing) for
the CS221 project.

2. Related Work

3. Literature Review and Related Work
There has been substantial progress made in the field of auto-

matic music transcription. AI techniques, and in particular neural
networks, have met and surpassed the performance of traditional
pitch recognition techniques on polyphonic audio, and we exam-
ined many different AI approaches to the AMT problem before
deciding how we would model our project. For instance, LSTMs,
which have been applied for sequence modeling in a variety of
uses such as speech and text analysis, have been shown to be ef-
fective for modeling polyphonic musical sequences [3]. Many
different neural networks have also been examined and compared
for their effectiveness at framewise piano transcription [2]. Com-
mercial systems, such as Anthem Score, offer AI-powered au-
tomatic transcription [1]. However, these services still face sig-
nificant challenges in accurately predicting note occurrences and
generating natural looking scores. Anthem Score approaches mu-
sic transcription from the perspective of image recognition as
well, and their utilization of a CNN as well inspired us to fur-
ther explore CNNs for our acoustic model.

CNNs have risen in popularity in recent years, especially with

1



tackling computer vision tasks [5]. The task of note detection
for music transcription can be treated similarly to image recog-
nition, as images of the time-frequency representations of audio
can be created. However, some new challenges arise with note
detection. Music notes are not localized to a single region in the
same way that most objects in images are—a note at some fun-
damental frequency will be composed of harmonics at multiples
of that frequency [1]. There is also interference among neigh-
boring harmonics, which is analogous to an image classification
task involving overlapping and transparent objects. Despite these
challenges, CNNs have advantageous properties that can be ap-
plied to AMT. Previous experiments have suggested that aggre-
gating information over several frames to inform a prediction can
yield higher performance, and taking convolutions over input data
allows our model to learn valuable features from polyphonic mu-
sical data.

The work of Sigtia et al. has also explored various models for
pitch detection in the acoustic model. They explore Deep Neu-
ral Networks (DNNs) and Recurrent Neural Networks (RNNs) in
addition to CNNs, and their results have shown that their CNN-
based model outperform the others for the acoustic modeling task.
We have used their CNN architecture as our guidance for con-
structing the acoustic model. In their paper, they further propose
a Music Language Model (MLM) that utilizes RNNs in order to
tackle polyphonic musical data, which generally poses a chal-
lenge for MLMs that utilize Hidden Markov Models (HMMs) [8].

4. Dataset and Features

4.1. Input Preprocessing

The dataset we used consists of 138 MIDI files of human per-
formances of classical piano pieces [12]. To generate input for
our acoustic model, we needed to first transform each MIDI file
into raw audio data in .wav format. We downsampled the au-
dio from 44.1 kHz to 16 kHz, and then we convert each .wav
audio file into a time-frequency representation with the Constant
Q Transform (CQT). An example result of the CQT is shown in
Figure 1 (top). CQT represents amplitude against a logarithmic
frequency scale, and this results in geometrically spaced center
frequencies, thus maintaining linearity in pitch [9]. Furthermore,
fewer frequency bins are needed, so we also have a reduction in
input features. We compute CQT over 7 octaves with 36 filters
per octave for a total of 252 filters (features per frame). We set
our hop length to be 512, so the transform considers 512 samples
per frame. This ultimately corresponds to a final frame rate of
16,000/512 = 31.25 frames per second. We normalize each of the
252 features across all the frames in our dataset by subtracting the
mean and dividing by the standard deviation of each feature.

4.2. Ground Truth Labels

Each MIDI file encodes information about the audio by spec-
ifying note-on and note-off events. We generate our own ground
truth labels by unraveling the note events in each MIDI file and
creating a binary vector of size 88 for each time slice (using the
same frame rate as before, 31.25 frames per second). This binary
vector encodes whether the ith note was present during the par-
ticular time slice. Concatenating the labels for a series of frames
would result in a piano roll representation such as the one shown
in Figure 1 (bottom).

Figure 1: CQT representation of a .wav file over a 20 second
time interval (top) and ground truth piano roll representation from
MIDI file over the same time interval (bottom)

4.3. Experimental setup

After this stage of preprocessing, we are left with a dataset
of 250850 frames in total, where our features are of dimension
252, and our labels are of dimension 88. We split our data into
train and test sets, with 200680 frames (110 songs) for training
and 50170 frames (28 songs) for testing (4:1 ratio). As input
into our CNN for acoustic modeling, instead of passing in just a
single frame as input, we pass in a context window of frames to
the model. For the purpose of our initial experiments, we used
a window size of 7 frames [13], where our task is to predict for
the center frame in each window given as input. Thus, one single
input would have dimension (252, 7), and the corresponding label
is still of dimension 88.

5. Methods
5.1. Music Transcription as Image Interpretation

For our acoustic model, we have decided to use a Convolu-
tional Neural Network (CNN). CNNs have risen in popularity in
recent years, especially in the field of computer vision [5]. In
computer vision, an input image is given to the CNN, and the im-
age is passed through multiple layers, such as convolutional lay-
ers, pooling layers, and activation layers (where non-linearities
can be applied). Convolutional layers consist of multiple filters,
which can be interpreted as each learning some higher level fea-
ture of the image. In the AMT problem, note detection can be
treated similarly to image recognition, as images of the time-
frequency representations of audio can be created. Note identi-
fication in music is simpler than image classification in several
ways: there are not many important textures to learn, and no rota-
tion or scaling is involved [1]. However, note identification poses
other new challenges. Music notes are not localized to a single
region in the same way that most objects in images are—a note
at some fundamental frequency will be composed of harmonics at
multiples of that frequency [1]. Additionally, there is interference
among neighboring harmonics, which is analogous to an image
classification task involving overlapping and transparent objects.
Despite these challenges, CNNs have advantageous properties
that can be applied to AMT. Previous experiments have suggested

2



Figure 2: CNN architecture

that instead of simply classifying a single frame of input, better
prediction accuracies can be achieved by aggregating information
over several frames. Thus, given a context window of frames as
input, a CNN model can perform convolutions across the frame
axis and utilize neighboring information when producing a pre-
diction for the center frame. Furthermore, along with the usage of
the CQT for our input time-frequency representation, we can use
CNNs to learn pitch-invariant features as we take convolutions
along the frequency axis. Through the use of pooling layers and
weight sharing (as opposed to all fully connected layers) in our
CNN, we can also reduce the number of parameters in our model.

5.2. CNN Architecture

Our implementation is guided by architecture described in the
previous work of Sigtia et al. We have started off with a network
consisting of two convolutional layers and 2 fully connected lay-
ers, with an output of 88 neurons (one corresponding to each key
on the piano). In the first convolutional layer, we have 50 fil-
ters, and a kernel size of (5,25), where 5 is along the frame axis
and 25 is along the frequency axis. We follow this layer with a
hyperbolic tangent activation layer, and we follow with a Max-
Pooling layer using a pooling size of (1,3) (pooling only over
the frequency axis) and use 0.3 Dropout. The second convolu-
tional layer also has 50 filters, but instead with a kernel size of
(3,5), where 3 is along the frame axis and 5 is along the frequency
axis. We also use the hyperbolic tangent as the activation func-
tion for this layer, as well as the same Max-Pooling layer and
0.3 Dropout. For each convolutional layer, we use He normal
initialization to randomly initialize the weights. We then follow
immediately with 2 fully connected layers. The first layer con-
sists 1000 hidden neurons, and the second layer consists of 200
hidden neurons, and each layer uses a sigmoid activation, with a
dropout rate of 0.3 for each layer as well. Our goal was to begin
with an architecture that was similar in structure to what Sigtia et
al. had shown to be valid via a grid search over these hyperparam-
eters, and then we would further adapt our model as necessary if
we found that it wasnt as successful.

We finally create our output layer of 88 neurons, each fully
connected from the previous layer. These also use a sigmoid ac-
tivation function. Thus, for each neuron in the output layer, the
prediction can be interpreted as the probability of the associated
piano key being ‘on’ during the center time frame of the input.
For each neuron, we use binary cross-entropy as our loss func-
tion. The architecture is summarized in Figure 2.

During training, we used a stochastic gradient descent opti-
mizer with 0.9 momentum. We began with a constant learning
rate of 0.01, and in our experiments, we iteratively refined a learn-
ing rate decay schedule, training over a total of up to 40 epochs.

6. Metrics
Our primary metrics for evaluating the performance of our

acoustic model were accuracy and F1-score. For each time frame,
we treat our CNN prediction as a composition of 88 binary tar-
gets. Thus, if we are evaluating our model over n frames, our
accuracy is evaluated over 88n targets. Our F1-score would also
be evaluated over 88n targets. The F1-score can be interpreted as
a weighted average of recall and precision, and an ideal F1-score
would be 1.0, while the worst would be 0.0 [11]. In particular, if
we let TP denote the number of true positives, FN denote the
number of false negatives, and FP denote the number of false
positives:

Recall R =
TP

TP + FN

Prediction P =
TP

TP + FP

F1-score =
2 ·R · P
R+ P

Intuitively, we can understand precision and recall as a means to
understand and quantify the relevance of our predictions. More
concretely, recall is the fraction of the present notes that are actu-
ally successfully identified, and precision is the fraction of identi-
fied notes that are actually truly present. Using F1-score allows us
to handle the extreme class imbalance present in our data, since
there are much more 0s than 1s in our targets. Measuring accu-
racy alone would not let us effectively evaluate our models perfor-
mance (if we output all zeros, our accuracy would already achieve
around 96%).

7. Experiments and Results
We initially started with a very similar CNN architecture used

in Sigtia et al. and we began our first training experiments locally
on a smaller dataset of only 25 Mozart songs, as well as with
reduced fully connected layers (200 hidden units in each layer).
With a constant learning rate of 0.01 (learning rates of this mag-
nitude were used in Sigtia et al.), we began running experiments
with 0.5 Dropout. During these training runs, our model was in-
clined to output all zeros (i.e. predict that no notes appeared in
any time frame). We knew that our model was definitely suffer-
ing from a lack of data, so as a result, our acoustic model did not
have an opportunity to learn the features well enough. We de-
cided to remedy this by acquiring more data and setting up our
model to run with actual GPUs by using Google Cloud Machine
Learning Engine resources. Before transitioning to running on
Google Cloud, we decided to try and tune our dropout rate, and
in particular, we wanted to verify that our network was even ca-
pable of learning any structure of our training data, and we were
curious about whether reducing some regularization would com-
bat underfitting and lead to any positive or interpretable results.
We found that using a dropout rate of 0.3 instead of 0.5 would ac-
tually enable our model to recognize the presence of some notes,
resulting in an F1-score of 32% (30% recall and 36% precision)
and 99% accuracy on our validation set within 25 epochs.

Our next experiments involved our full dataset of 138 songs,
and we ran these on Google Cloud using a Tesla K80 GPU. We
focused on further tuning our dropout rate, as well as tuning the
number of hidden units used in our fully connected layers. These
were some of the main hyperparameters that differed from the

3



work of Sigtia et al., and we wanted to see if we could repro-
duce similar results using similar architecture for our CNN. After
experimenting with dropout rates within the range 0.1 0.7 in a
binary search manner, we ended up settling with a dropout rate of
0.3, which gave us our best performance on our validation set. We
found that the best performance was achieved by using 1000 hid-
den units in the first fully connected layer, and this was our final
configuration that we ended up using for the remainder of our ex-
periments. With a constant learning rate of 0.01, we were able to
achieve 44.34% F1-score and 98.15% accuracy on our validation
set.

However, we found that our training performance was plateau-
ing relatively earlyafter about 10 epochs, our models progress
seemed to become stagnant as the F1-score continued to jump
around 44% for the remaining epochs. We deduced that this
plateau was due to training with too large of a learning rate, re-
sulting in imprecise updates. We decided to tackle this problem
by introducing a learning rate schedule. We tried 3 different step
decays: 1) starting at a learning rate of 0.1 and then halving every
5 epochs, 2) starting at a learning rate of 0.05 and then halving
every 10 epochs, and 3) using a learning rate of 0.05 for the first
5 epochs, dropping to 0.025 for the next 7, dropping to 0.0125
for the next 9, and dropping to 0.00625 for the remaining epochs.
The secomd learning rate schedule ended up achieving the best
performance and was effective at breaking the plateau. Using this
step decay schedule, we were able to achieve our best results on
our validation set, shown in Figure 3. This is likely because the
initial larger learning rate is only needed for a few epochs in order
to make more dramatic training progress, and for later epochs, the
model can spend more time refining its performance with reduced
learning rates.

An example prediction and its corresponding ground truth
is shown in piano-roll representation in Figure 3. This exam-
ple shows that our CNN can successfully learn to identify most
pitches, even in polyphonic audio with overlapping notes played
in the same time frame. There is still some noise picked up and
not all notes are identified for their full duration. However, this
is likely to be due to the fading volumes of some notes; while
the MIDI file would show the full duration of the note, our audio
input would not hear the end of some notes with the same am-
plitude, and thus, our CNN model would not be able to identify
the trailing ends as easily. One potential way to tackle this would
be to lower our threshold for classifying a note as present to al-
low less confident predictions of ‘on’ notes to still be counted,
although this may pose problems with introducing more noise in
other areas besides the fading ends of correct notes. Neverthe-
less, we believe that our model is able to learn significant features
of the audio, as it sufficiently captures complex note patterns and
is able to recognize multiple pitches even when they interact and
overlap.

For our train set, we achieve 74.09% F1-score and 99.81% ac-
curacy using the third learning rate schedule (manual step decay).
We believe that this indicates that we have overfit to our training
set, and we believe that this can be remedied with more regular-
ization and by exposing our model to more varied data. There
is also an incredibly large space of possible notes sequences and
combinations that could potentially appear in a song. Since our
dataset only spans 6 composers and 138 songs, one of the issues
that could be hindering our acoustic models performance would
be the limited note patterns present in our data. We can remedy

this by either acquiring more MIDI files of other songs across
many more composers, or by generating synthetic data to train
our model with. With synthetically generated data, we would
then be able to ensure that our model is continuously exposed to
a wide variety of acoustical signals, and thus we would increase
the distribution of data that our model is trained on.

8. Score Generation

The second component of our music transcription pipeline is
to take the output of our acoustic model and generate a corre-
sponding ‘natural’ music score. We detail this step further in our
report for CS221. We separate score generation into two prob-
lems: tempo selection with bucketing for initial score generation,
and smoothing for refining. A score cannot be generated without
a tempo to interpret rhythms relative to, and note durations are
primarily expressed as part of a standard set of rhythmical values
(for example, a quarter note, which is often 1 beat, or an eighth
note, which is often half a beat). In order to generate our initial
score, we need to select a tempo that aligns the observed dura-
tions as best as possible with the expected rhythmic buckets. We
then apply a natural language model to attempt to smooth this
initial output.

While we will not be going into much detail about the imple-
mentation and model structure of this component, we would like
to provide an overview of how the data is further transformed
from the output of our acoustic model.

8.1. Tempo Detection and Bucketing

The tempo detection and bucketing module takes as input any
observed features that are expected to occur ‘on beat’ and selects
a tempo to minimize the observed distance between the durations
of these features and ideal bucket durations. To do this, we de-
fined a loss function to that measures how off beat a series of
observations is and used stochastic gradient descent to optimize
our tempo parameter to minimize this distance. Tested against
ideal observed note and rest durations for songs without multi-
ple tempos, our method predicted at least one tempo in the top
four candidates sufficiently close to the approximate ‘true’ tempo
to achieve less than 18% note by note error against the bucketed
original composition. We also saw good performance when the
technique was applied to not onset differences on acoustic model
output.

8.2. Smoothing

We used a Hidden Markov Model (HMM) as a natural lan-
guage model to attempt smoothing on existing transcriptions.
We modeled our hidden states as the bucketed originally com-
posed rhythms, our emissions as the observed bucketed rhythms
(given a good selection of tempo), our transition probabilities as
n-gram probabilities over hidden states, our emission probabili-
ties as multinomial, and our start probability as uniform over all
states. We tested various forms of inference, maximizing like-
lihood conditioned on all emissions for both individual and the
entire sequence of hidden states. We found that this model gives
too much weight to expected transition probabilities and attempts
to make all rhythms look similar (removing the uniqueness of
songs).

4



LR Schedule Accuracy F1-score Recall Precision
Initial LR = 0.1, halving every 5 epochs 98.33% 52.85% 50.10% 59.74%

Initial LR = 0.05, halving every 10 epochs 98.72% 55.07% 52.54% 60.51%
Manual step decay 98.72% 54.45% 51.91% 59.49%

Table 1: Validation set results with step-decay learning rate schedules after 40 training epochs.

(a) CNN prediction

(b) Ground Truth

Figure 3: a) A 20 second segment of example predictions visualized as a piano roll.
b) The corresponding ground truth piano roll of the same 20 second segment.

Figure 4: Our full pipeline transcription (acoustic model and
tempo detection) of Mozart’s Sonata No. 15 in C Major

9. Conclusion and Future Work

In this project, we have implemented an end-to-end pipeline
to convert .wav piano audio files into a ‘natural’ score-like rep-
resentation by breaking down the AMT problem into two main
components: acoustic modeling for pitch detection, and score
generation. Here, we have presented our acoustic model, a Con-
volutional Neural Network that can identify the presence of notes
in a given frame of audio. We have found that our model can
successfully identify pitches in substantially complex polyphonic
audio, and in conjunction with the tempo selection and smooth-
ing of our score generation model, we are able to generate corre-
sponding scores for our raw audio. Our experiments support the
advantages and effectiveness of CNNs for acoustic modeling that
Sigtia et al. explored in their work.

We expect that we can achieve higher performance by acquir-

ing more polyphonic piano audio and generating synthetic data,
and random noise can be incorporated into our training examples
as well to make our model more robust to to a wider range of
input audio. Furthermore, we would consider exploring other in-
put representations for our acoustic model. Instead of using the
CQT representation, we could utilize the Mel-scaled short-time
Fourier transform [10], or other representations with higher tem-
poral resolution such as the variable-Q transform [13]. Other loss
functions could also be more appropriate—a weighted loss func-
tion for each node would be able to assign more consequence to
false negatives, incorrectly classified examples where the partic-
ular note was indeed present. Additionally, while the architecture
proposed in Sigtia et al. does seem to be effective for our acoustic
model, the opportunity still remains for further hyperparameter
tuning. For example, we could potentially insert more convolu-
tional layers, experiment with more complex architectures, adjust
how dropout is applied, and continue to explore different config-
urations for our fully connected layers. Furthermore, our current
model is structured with each of the 88 output nodes optimizing
individually, and common relationships and correlations among
multiple notes are not necessarily being captured. Overall, there
are many potential paths to explore in terms of restructuring our
acoustic model, and we expect that further tuning and experimen-
tation can help refine our model and improve performance.

10. Code

Our code for both the acoustic model and score genera-
tion implementations can be found in our Github repository:
https://github.com/mbereket/music-transcription. [14], [7], [4],
[6]

5



References
[1] Music transcription with convolutional neural networks.

https://www.lunaverus.com/cnn.
[2] E. B. A. Ycart. On the potential of simple framewise approaches

to piano transcription. 2016.
[3] E. B. A. Ycart. A study on lstm networks for polyphonic music

sequence modelling. 2017.
[4] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro,

G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat,
I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefow-
icz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga,
S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,
I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan,
F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu,
and X. Zheng. TensorFlow: Large-scale machine learning on het-
erogeneous systems, 2015. Software available from tensorflow.org.

[5] O. Abdel-Hamid, A. Mohamed, H. Jiang, and G. Penn. Applying
convolutional neural networks concepts to hybrid nn-hmm model
for speech recognition. 2012.

[6] D. L. D. E. M. M. E. B. O. N. B. McFee, C. Raffel. librosa: Audio
and music signal analysis in python. 2015.

[7] F. Chollet et al. Keras. https://github.com/fchollet/
keras, 2015.

[8] S. D. E. Benetos. A shift-invariant latent variable model for auto-
matic music transcription. 2013.

[9] H. Fugal. Optimizing the constant-q transform in octave. 2009.
[10] M. Huzaifah. Comparison of time-frequency representations for

environmental sound classification using convolutional neural net-
works. 2017.

[11] R. Joshi. Accuracy, precision, recall and f1 score: Interpretation of
performance measures. 2016.

[12] B. Krueger. Classical piano midi page. http://www.piano-midi.de/.
[13] S. Sigtia, E. Benetos, and S. Dixon. An end-to-end neural network

for polyphonic piano music transcription, 2015.
[14] vishnubob. Python midi. https://github.com/vishnubob/python-

midi.

6

https://github.com/fchollet/keras
https://github.com/fchollet/keras

