Grapheme to phoneme conversion for Dutch

Brian Hicks
Stanford University
bhicks2@stanford.edu

Abstract

Grapheme-to-phoneme conversion (G2P) refers to the
conversion of a written word to its pronunciation, which
plays a crucial role in text-to-speech software and speech-
to-speech machine translation. We present a G2P model for
the Dutch language based on a long short-term memory re-
current neural network (LSTM). Specifically, we use a deep
bi-directional LSTM (biLSTM) that takes into consideration
the context of the graphemes before predicting the phoneme
sequence. By using contextual clues, our model also elim-
inates the need for explicit alignment of the dataset. We
achieve an accuracy of 66.2% completely correct phoneme
predictions using a single biLSTM-based model, and 75.5%
accuracy when averaging the predictions from an ensem-
ble of such models. Our results demonstrate the power of
LSTMs in the G2P task and facilitate further G2P research
using unaligned datasets.

1. Introduction

One of the common problems in natural language pro-
cessing (NLP) is determining the correct pronunciation of
a written word. This process, known as grapheme-to-
phoneme conversion (G2P), is most commonly used in
technologies for speech synthesis, speech recognition, and
sounds-like queries in textual databases. Due to the rele-
vance of G2P conversion to everyday technologies, there
exists a rich literature on automating the process. Initially,
researchers attempted to create a program that searched for
the corresponding phoneme pronunciation in a dictionary,
but with more than hundreds of thousands of entries, this
method proved to be inefficient and slow. Researchers then
investigated rule-based conversion, but natural languages
frequently exhibit exceptions or irregularities, so such ef-
forts were fruitless [[1]].

Given these deficiencies, machine learning has become
a popular application for automating G2P conversion. One
of the most common techniques applied to G2P conversion
is applying alignment-based neural networks [2]. The data
is preprocessed so that each training input grapheme char-

Enze Chen
Stanford University

enze@stanford.edu

Minjia Zhong
Stanford University

mzhong2@stanford.edu

acter aligns with a phoneme character before input into a
neural network. Other algorithms like Naive Bayes create a
probability distribution to predict the phoneme output [3].

Although the aforementioned techniques have reported
relatively high accuracy rates, they are difficult to imple-
ment if one does not already have specialized linguistics
knowledge. Alignment-based algorithms, for example, re-
quire an understanding of the G2P conversion to properly
align the characters during preprocessing, which is com-
plicated by the lack of a one-to-one correspondence of the
graphemes and phonemes in a word. Consider, for exam-
ple, the grapheme (x), which (in English) represents a two-
phoneme sequence /ks/, or the phoneme /[/ which is repre-
sented by the two-grapheme sequence (sh).

zus >

Model M /zas/

Figure 1. Our model takes Dutch graphemes (e.g. “zus”) as inputs
and it outputs a predicted phoneme string.

Given the domain expertise required for alignment-based
methods, as well as the labor-intensive process of align-
ing grapheme and phoneme strings, we chose to construct
a model that does not require explicit grapheme-phoneme
alignment of the data. As shown in Figure [T} the in-
puts to our model are whole words written in Dutch, and
our model seeks to predict the entire pronunciation string
without any specified alignment between graphemes and
phonemes. Such alignment-free models have been pro-
posed for related machine translation tasks using sequence
to sequence learning [4] and connectionist temporal classi-
fication [5]], both of which leverage the power of recurrent
neural networks to process sequential data. For the G2P task
in particular, long short-term memory recurrent neural net-
works (LSTMs) have shown great promise because they can
use contextual clues to perform alignment-free G2P conver-
sion [6, [7]], and this is the approach we take in this work.

2. Methodology

2.1. Data Preprocessing

Out dataset is derived from ABN-Uitspraakgids [8], a
Dutch pronunciation dictionary available online from Digi-
tale bibliotek voor de Nederlandse letteren.

Because the data extracted from the source was not well-
formatted for machine learning, we performed a variety of
preprocessing procedures on the data. This included the ex-
traction of the text from the PDF pronunciation dictionary
and subsequent cleaning of the data, including removal of
incorrect data points and extraneous information.

After this preprocessing was completed, our final dataset
consisted of 24,404 orthography-pronunciation pairs.

2.2. Model Construction
2.2.1 Baseline Model

Our initial baseline model is only slightly more complicated
than basic one-to-one character mappings. Given a set of
rules provided by [9], we designed a simple G2P program
which maps characters deterministically to a pronunciation,
using only a superficial knowledge of Dutch. In general, the
only complexities of pronunciation considered in this base-
line were vowel combinations and word-final consonant de-
voicing. Because this baseline approach mimics a brute-
force approach that could be attempted by anyone with a
basic pronunciation table, it provides a solid benchmark for
our machine learning algorithm. We anticipate low predic-
tion accuracy due to the difficulty of codifying G2P conver-
sion, as well as the fact that it makes little attempt to take
into account context when making predictions.

2.2.2 Long Short-term Memory Recurrent Neural
Network

In developing machine learning models for this application,
the lack of alignment between graphemes and phonemes
was highly problematic. Many of the models that we
could have considered, including many of the most com-
monly used machine learning algorithms such as support
vector machines or logistic classification, would have re-
quired aligned data in order to accurately train the models.
Given that our dataset was not pre-aligned, and the process
of aligning it would have been incredibly labor-intensive
(not to mention, theoretically disingenuous from a linguis-
tic standpoint), this type of model was immediately disqual-
ified as an option.

Common sense tells us that the pronunciation of any
given grapheme is highly context dependent, since in differ-
ent scenarios, the same letter can be pronounced in a variety
of ways. Consider, for example, the English grapheme (g).
Its pronunciation changes between /g/ and /d3/ depending
on what letter follows it. Thus, any model that we use needs

to be context-aware, in that any successful model must be
able to consider the surrounding graphemes when making
a prediction. This makes long-short-term-memory recur-
rent neural networks a natural choice as the foundation of
our model, since they excel in processing context-sensitive
data.

As such our own G2P model is based on a bidirection
LSTM that was constructed using Google’s TensorFlow li-
brary [[10]. Our model draws from a recently demonstrated
application of deep learning for alignment-free English G2P
conversion from Rao et al. at Google [6].

Figure[2]below shows the overall architecture of the neu-
ral network (NN). The input to our NN is an /N X D matrix,
where N is a fixed number of characters, corresponding to
the length of the longest word in the dataset, and D is the
total number of graphemes that our model can process, in-
cluding a null-character, which we used to pad words where
the number of characters in the word is less than /N. In our
case D = 41, and N = 27 + §, where J is the output-delay
(described below). Each row 7 of the matrix is a one hot
vector corresponding to the character at index ¢ in the word.

The first layer of our NN is a bi-directional LSTM (biL-
STM), with the forward cell containing 2048 units, and the
backward cell containing 1024 units. This choice of first
layer allows us to create contextual representations of each
character of the input, taking into account both previous
and upcoming characters. This step is key to the success
of the model, as it allows the predictions to be made with
full awareness of how each grapheme fits into the overall
context of the word.

After the input has been processed by the biLSTM, we
concatenate the forward and backward hidden states to form
an N x 3072 matrix. Then, depending on the output delay
0, we remove the first § rows of the matrix, which forces the
prediction model to have considered at least the first § char-
acters before it makes a prediction. Ultimately, this layer
returns an (N —) x 3072 matrix that represent a context-
aware and output-delayed encoding of our input sequence.

Each row of this new encoding is then used as the in-
put to a simple feed-forward NN with one hidden layer of
1024 neurons. The activation function for the hidden layer
is a simple ReL.U function, and softmax is the evaluated on
the output layer. For each row of the context-aware ma-
trix passed into the network, a single phoneme (or null-
phoneme) is returned, which can then be used to construct
a string representation of the original input.

In order to train the model, we use batched Adam op-
timization, as provided by TensorFlow [[10], of a modified
cross-entropy loss-function. If b is the number of data points
per batch and D is the number of possible classes (i.e.,

Input Matrix

N xD

biLSTM

Backward
1024 units

Forward
2048 units

Context Aware
Output-Delayed
(N -98) x 3072

!

Hidden Layer
1024 units

!

Output Layer

57 units

Figure 2. Our neural network architecture. We featurize a
grapheme sequence of N characters using one-hot encodings of
length D, and this is input into our biLSTM. We concatenate the
outputs of the forward and backward memory units to form inputs
of size (N —) x 3072 to another hidden layer before making the
final prediction. We use a ReL U activation function for the hidden
layer and the softmax function for the output layer.

phonemes), then our cross-entropy loss C'E is given as

L& D
CE(y -3 DD ik log Gijn

i=1 j=1 k=1

N—-§

given that , §j € RN XD

2.3. Ensembles

and every ¥;; is a one-hot vector.

During our training, we discovered that even for a fixed
0, the results of each model were highly variable. In order
to account for this, we elected to construct an ensemble that
incorporated several models. Ultimately, we ended up con-
structing four different varieties of ensemble, each of which
combined the predictions of the constituent models in a dif-
ferent way.

Our first ensemble was a simple averaging ensemble.
Formally, this was designed such that the final prediction 3
of the ensemble comprising p individual models was given

by
p
=y

where (%) is the prediction of the ith constituent model. We
also created a slightly modified version of this ensemble that
relied on a weighted average instead. In order to determine

@\)—‘

the weights, we evaluated each model in the ensemble on a
previously unseen development set. If w(*) was the accuracy
of model ¢, then the final prediction of the weighted average
model was given by

<
||

SO Z () ()

In addition to the two averaging models, we also imple-
mented two voting models. In these ensembles, rather than
average the probabilities output by each model, each model
in our ensemble makes a prediction about what each output
character will be, which we record as that model’s “vote”.
Once each model has had a chance to vote, we identify
which character had the most votes, and return that. One of
our voting models was an egalitarian voting model, where
each constituent model receives a single vote. The other was
a weighted voting model, where, similarly to the weighted
averaging model, we determined the accuracy w® for each
model 7 in the ensemble, and then gave that model a number
of votes proportional to its accuracy.

2.4. Evaluation Metrics

In order to evaluate the performance of our models, we
use two primary evaluation metrics. First, and most intu-
itively, is simply the ratio of the number of correctly predic-
tion pronunciations to the total number of pronunciations
generated. We refer to this hereafter as our prediction accu-
racy.

Although the prediction accuracy is an intuitive metric
of the correctness of our model, it fails to explain how in-
correct a prediction will be if it is not correct. Therefore,
we also use the ratio of the average edit-distance of the in-
correct predictions to the average length of the correct pro-
nunciations. Edit-distance calculates the total number of in-
sertions, deletions, and substitutions needed to change one
string into another.

The rationale behind edit-distance is that this metric
gives information about how close our prediction is to the
correct pronunciation. However, even small edit-distances
are significant in short words, so we take the ratio of the edit
distance to the average length in order to account for this,
and we refer to this simply as the “ED ratio.”

3. Results and Discussion
3.1. Baseline

Our baseline model performed better than anticipated
on our development data, although its prediction accuracy
was still very low at 18.2%. The average edit distance be-
tween the incorrect predictions and correct pronunciations
was 2.310, while the average length of incorrectly predicted
words was 8.166. This gives us an ED ratio of 0.282.

3.2. biLSTM

Overall, we consider our biLSTM model a success due
to the high accuracy rates and low ED ratios, especially
when compared with the baseline. Accuracy scores ranged
from 59.9% to 66.2%, which are significantly higher than
the baseline accuracy of 18.2%. These results show that
alignment-free approaches are effective for G2P conversion
and far more successful than our deterministic baseline.
ED ratios are slightly less than 0.2, meaning that the out-
put phoneme contains one incorrect character for every five
characters.

Our LSTM appears to most accurately execute G2P con-
version when the input delay 9 is 2. This differs from results
found in Rao et al., which found that maximal input delay
(i.e. the entire word) produced the highest accuracy. Note,
however, that the edit ratio is fairly consistent across the ¢
values we tested.

3.3. Ensemble

As we described above, we found significant variability
in our how well any given model performed, even if we as-
sume a fixed §, depending on the order that the training data
was presented. The variation was also significant across dif-
ferent ¢ values. In order to counteract this variation, we
constructed four different types of ensembles, which pro-
cess the output of 20 different NN models (five fully trained
models for each value of § € {0,1,2,4}.

When we evaluated the performance with these four
ensembles, we found that we could attain up to an 11.6
percentage-point increase in accuracy. The basic (un-
weighted) average was the just barely the best performing
of all the ensembles, but ultimately the performance of all
four ensembles was comparable.

Table E] shows the complete table of our results, includ-
ing the performance of each the individual models for each
value of § considered, the baseline score, as well as the per-
formance of each of the ensembles.

3.4. Discussion

Given that our model (using the highest performing en-
semble) was able to achieve a 57.3 percentage-point im-
provement over the baseline’s accuracy (for a total of
75.5%), we feel that our model is a useful tool for G2P con-
versions. Not only does our model beat our baseline by a
significant margin, we also found that our model attained a
final accuracy comparable to those achieved by the models
considered by [6] (it must be noted, however, that Rao et
al.’s models were trained on English, which means a direct
comparison is impossible). As a result, it is apparent that
our model is producing accuracy rates for alignment-free
Dutch G2P that are on par with the alignment-free perfor-
mance found for English.

INDIVIDUAL AND ENSEMBLE PERFORMANCE

Model Accuracy (%) ED ED ratio
Baseline 18.2 2.310 0.282
6=0 59.9 1.734 0.194
o=1 64.7 1.658 0.188
6=2 66.2 1.656 0.188
o=4 64.7 1.639 0.185
Individual Model Average 63.9 1.672 0.189
Averaging Ensemble 75.5 1.535 0.174
Avg. Ensemble (Weighted) 75.4 1.527 0.173
Voting Ensemble 74.9 1.583 0.179
Voting Ensemble (Weighted) 74.9 1.573 0.179

Table 1. Our results for the baseline, individual LSTM models with
varying delay, and ensembles of models (5 of each § value). The
best performance of 75.5% accuracy was achieved by a simple
average of the outputs from 20 separately-trained LSTM models,
while the best ED ratio was achieved by taking a weighted average.

100 Accuracy by Pronunciation Length

80

60 |

Accuracy

40+

20+

0 5 10 15 20
Length

Figure 3. The accuracy attained by our averaging ensemble on our

test set graphed against the number of characters in the correct pro-

nunciation string. In general, we see that there is a slight tendency

that the longer the word, the harder it is to accurately predict.

After running the averaging ensemble and seeing the pre-
dictions that are made compared to the actual pronuncia-
tion, it is possible to piece together an understanding of
what kind of errors our model is making at the moment,
so as to better understand how to improve it in future work.
The first thing we looked at in this regard was how well the
model does in predicting pronunciations of various lengths
(Figure [3|shows the accuracy by length). In general, we see
that the longer a word, the harder it is to accurately predict.
From a purely probabilistic standpoint, this makes sense,
as the more characters that need to be predicted, the more
likely we are to make an error. Nonetheless, this is a use-
ful insight into future avenues of research, as Dutch, like
German, is a heavily compounding language. This means

that many Dutch words are formed by combining shorter
words into single-word compounds (for example, sinaasap-
pel (orange) combines with sap (juice) to form sinaasappel-
sap (orange juice)). Thus, in many cases we might be able
to break longer words down into shorter words by devel-
oping a segmentation system to identifying the constituent
morphemes of compound words, and then constructing the
pronunciation of each segment individually.

Another type of error that is quite common in our data set
is duplication of a phoneme in the output. As an example,
if the pronunciation of a word is actually /brur/, our model
might predict /brurr/. This is likely due to the LSTM not
“forgetting” as quickly as it should, and as a result the last
phoneme is duplicated. It is possible more training may
be able to fix this more readily, but it is also feasible that
penalizing this kind of duplicated character more heavily
would encourage the model to improve its ability to “forget”
past phonemes, though this was avenue of investigation was
not ultimately pursued due to time pressures.

Another type of error that is very common is for intu-
itively related phonemes to be frequently mistaken for each
other. For example, we found that the phonemes /a/ and /a/
were frequently confused with one another. In many ways,
this makes sense, as the grapheme (a) is often used to repre-
sent both sounds. In order to resolve this issue, it would be
useful to collect more data, specifically data that contains
many /a/s and /a/s, so that the model can have more ex-
amples to learn from in order to better distinguish between
them.

Additional avenues of inquiry include implementing
sequence-sequence or connectionist temporal classification.
While we considered these models as potential candidates
of implementation, we chose to pursue biLSTM due to the
simplicity of its design.

4. Conclusion

To build our G2P conversion model for the Dutch lan-
guage, we relied on a biLSTM due to its ability to operate
without aligned data sets and its inclusion of graphemes’
contextual clues before outputting a phoneme sequence.
By combining our biLSTM with an ensemble of predic-
tions, we achieved an accuracy of 75.5%. Potential meth-
ods to improve this model include classifying graphemes
according to their compound structure and implementing
sequence-sequence or connectionist temporal classification.
Ultimately, our G2P conversion model was successful at
producing accurate predictions of G2P conversion, in that
it achieved similar rates of accuracy as [6]’s models did in
English.

5. Author Contributions

All authors discussed the design of the LSTM archi-
tecture. B.H. performed the data preprocessing, wrote the
model baseline, and implemented the neural network mod-
els. All authors discussed the results, designed the poster,
and co-wrote the manuscript.

6. Acknowledgements

We would like to express our sincerest gratitude to the
professors and course staff of CS229, for dedicating their
time, experience, and knowledge to the class.

References

[1] Maximilian Bisani and Hermann Ney. Joint-sequence mod-
els for grapheme-to-phoneme conversion. Speech communi-
cation, 50(5):434-451, 2008.

[2] Terrence J Sejnowski and Charles R Rosenberg. Parallel net-
works that learn to pronounce english text. Complex systems,
1(1):145-168, 1987.

[3] John Lucassen and Robert Mercer. An information theoretic
approach to the automatic determination of phonemic base-
forms. In Acoustics, Speech, and Signal Processing, IEEE
International Conference on ICASSP’84., volume 9, pages
304-307. IEEE, 1984.

[4] Tlya Sutskever, Oriol Vinyals, and V. Le, Quoc. Sequence to
sequence learning with neural networks. In NIPS, 2014.

[5] Alex Graves, Santiago Fernidndez, Faustino Gomez, and
Jirgen Schmidhuber. Connectionist temporal classification:
Labelling unsegmented sequence data with recurrent neural
networks. In /ICML, 2006.

[6] Kanishka Rao, Fuchun Peng, Hasim Sak, and Francois Beau-
fays. Graphme to phoneme conversion using long short-term
memory recurrent neural netowrks. In IEEE ICASSP, pages
4225-4229, 2015.

[7] Kaisheng Yao and Geoffrey Zweig. Sequence-to-sequence
neural net models for grapheme-to-phoneme conversion. In
ISCA - International Speech Communication Association,
2015.

[8] P.C.Paardekooper. ABN-uitspraakgids. Digitale bibliotheek
voor de Nederlandse letteren, 1978.

[9] Simon Ager. Omniglot: Dutch, 2015. Accessed: Nov. 7,
2017.

[10] Martin Abadi et al. TensorFlow: Large-scale machine learn-
ing on heterogeneous systems, 2015. Software available
from tensorflow.org.

