CS5229 PROJECT REPORT

Predicting Instagram tags with and without data
Shreyash Pandey - shreyash@stanford.edu
Abhijeet Phatak - aphatak@stanford.edu

Abstract

There are around 30,000 human-distinguishable basic object classes and many more fine grained
ones. A major barrier to progress in computer based visual recognition is thus collecting training data
for many classes. To counter this problem, a technique known as Zero Shot Learning (ZSL) has recently
been introduced through which one is able to detect classes which were not part of the training set. In
this project, we have analyzed two techniques within this area, describing the algorithms, strengths and
weaknesses. To compare them with fully supervised image classification, we picked the task of Instagram
hash-tag prediction, and developed an end-to-end data collection, cleaning and training regime for deep
CNN architectures.

1 Introduction

One of the major bottlenecks in recognizing objects from images is that the number of different classes that
the image could comprise of are huge in number. Data collection and annotation process for all those classes
can be too inefficient and unfeasible. The other way to recognize those objects is to design algorithms that
simulate how humans overcome this issue. A human being can detect the object in question even though
it may be the first time they are seeing it. We are able to perform this inference by drawing information
about that object from a different source (like text) and then using that to attempt to identify the object.
This method is essentially what is used in practice to detect unseen classes and is referred to as Zero Shot
Learning (ZSL).

A ZSL model typically utilizes information from text corpora, images and their labels and maps them
to a common semantic space. Such a semantic space could either be a word space or an attribute space.
Attribute space is defined using attributes(usually binary) such as ’hasFur’, 'hasTail’, “isBrown’ etc. and is
usually not preferred since manually tagging images with such attributes is not scalable and is inefficient.
In case of a word space, where the labels are already mapped to that space, a mapping is learnt from the
data to project images into that space. During test time, the input image is mapped in the semantic space
and then a nearest neighbour search or some other similarity metric is used to select the closest unseen
class.

As part of our project, we have decided to implement and compare two ZSL methods, with a specific
application in mind - predicting common Instagram tags for images. The parsed tags (English words) are
unseen classes that our ZSL tags map to. To compare them to fully supervised methods, we have also
developed a cascade of data collection, data cleaning and training a deep CNN architecture.

We start this report by covering the basic aspects of all the common ZSL techniques, followed by a
comparison between the two methods, then describing in detail the task at hand and the data preparation
methods that we used, and finally concluding by comparing ZSL to fully supervised methods. We also
include parallel work on Flask server that acts as a front-end for our hash-tag generation module.

2 Related Work

The recent survey paper titled, ”Zero-Shot Learning - The Good, the Bad and the Ugly” was a great
starting point for us as it provided a comprehensive overview of different techniques that have been tried
in ZSL literature |1]. The general approaches that recognize unseen classes in images consist of knowledge
transfer between visual and semantic spaces. This is done by ensuring that there is compatibility (linear or
non-linear) between the two spaces. Methods that learn non-linear compatibility between the two spaces
outperform methods that learn linear compatibility. Hybrid models are the ones that express images and
semantic class embeddings as a mixture of seen class proportions. Following the advice of this paper, we
decided to implement two hybrid models for our task, mostly because they are intuitive and simple to
understand, and give decent results as well.

3 Zero Shot Learning Methods
3.1 ConSE

The first technique, known as ConSE or “Zero-Shot Learning by Convex Combination of Semantic Em-
beddings” (ConSE), employs a straightforward approach to dealing with ZSL tasks [2]. It uses a classifier
trained on ImageNet to obtain semantic embedding of images by a convex combination of class label em-
bedding vectors from the training set. The intuition is that the semantic embedding of an unseen image
would be close to a weighted combination of the most likely seen classes:

T T
1)
== > p(o(xitjx)s(Yo(xit)) where Z = p(Yo(x;t]j x)); (1)
— t=1
T here is a hyperparameter, Yo(x;t) gives the t"* most probable label and s(y) gives the semantic embed-
ding of an image y. Finally, the prediction is obtained by finding the class nearest to the obtained semantic
embedding.

We implemented this in PyTorch [3], and we used gensim for 300 dimensional Word2Vec features. For
our experiments, we used the Word2Vec features trained on Google News because it had the largest vo-
cabulary (3M). To perform the nearest neighbour search in the semantic word space, we used the cosine
similarity metric. Also, because ImageNet classes mostly consist of multiple words per class name, we
averaged the word vectors as recommended by the authors of the original paper.

3.2 HierSE

The next paper we studied was an extension of ConSE, “Zero-shot Image Tagging by Hierarchical Semantic
Embedding” (HierSE) [4]. It improves upon ConSE and obtains better semantic embedding by extracting
hierarchical structure defined in the WordNet. This is to ensure that labels with low/no occurrence in
the vocabulary, which are of particular interest in ZSL, get reliable embedding vectors. It also creates its
semantic space from Flickr tags as opposed to Google News in ConSE. This is based on the intuition that
Flickr might be a better source since their tags better capture the label’s visual context. The embedding
vectors now are obtained by :

T
= 7 bkt Nnlt) whees) =5 3wy iy

y' eyUsuper(y) (2)

Zni= Y, w(yjy);

y' €EyUsuper(y)

Here super(y) refers to the ancestors of a label obtained using WordNet and w(y’ j y) is a weight subject
to exponential decay with respect to the minimal path length from y to y’. Prediction is performed in a
similar manner as described above. The code [5] for HierSE is available online in Caffe and TensorFlow.
We used the TensorFlow code for testing purposes.

Figure 1: Results of our PyTorch ConSE implementation for Hash-tag generation using ZSL. We took a
set of 76 unseen (instagram relevant) tags. We then map 76 tags to popular hashtags as shown below.

—— ——

Instagram

ImageNet Tags ___, ZSL Prediction ——> Predicted
Hashtags

#ootd

‘jean, blue jean, denim’, #fashion
‘maillot, tank suit', #fashionblogger
'suit, suit of clothes', #stylish
:manllu_t, . . #fashionista
bow tie, bow-tie, bowtie’, Fashion —> #trendy

:st_age', #fashionaddict
wig, #fashiongram
sweatshirt, #fashionlover
‘miniskirt, mini’, #whatiwore
‘sunglass’ #styleoftheday

4 Supervised Hashtag Prediction

The idea was to compare ZSL methods to fully supervised methods on a real world image classification
task, and we chose Instagram hashtag prediction as it is relevant and exciting. The challenge is that there
is no publicly available dataset that has images and hash-tag labels, which is why we had to develop the
entire cascade on our own.

4.1 Data Collection

One option was to collect data directly for hash-tags, but this would pose a serious concern: word vectors
would not be available for semantically non-sensical hashtags that are prevalent in social media. Hence, we
decided to collect data for common English words that map to popular Insta hashtags, as this would help us
have a fair comparison between ZSL and fully supervised methods. We surveyed and collected 76 partially
exhaustive labels that were mapped to popular hash-tags using an API from www.al l-hashtag.com which
maps English words to Instagram hashtags. Once we had this list, we used DuckDuckGo image search
engine to download 200 images per label [6]. Unlike Google search that blocks queries if there are too many
of them, DuckDuckGo doesn’t keep track, and hence it was ideal for our data collection system.

4.2 Data Cleaning

One quick look at the data downloaded through DuckDuckgo showed that there were plenty of noisy images
that would hamper any classifier’s accuracy. For example, some search queries had images with too many
watermarks, ads or text on top of images. To remove such outliers, we employed the following procedure:

Feature Extraction: Deep Convolutional Neural Networks have revolutionized feature extraction
for image data. Instead of going ahead with traditional SIFT or SURF features, we decided to
extract 4096 dimensional feature vectors as outputs from FCT7 layer of pre-trained AlexNet[7] CNN
architecture. This is bound to capture the semantic juice present in the image, and is ideal for the
downstream task of outlier detection.

Dimensionality Reduction: To perform outlier detection in a reasonable amount of time, and to
remove correlations among different features, we decided to have a dimensionality reduction module
in the pipeline where we employ PCA to reduce dimensions of the feature vector from 4096 to 128.
We used scikit-learn [8] for PCA.

Outlier Detection: We used K-Means as a clustering technique to form 5 clusters for images of
each class. Images that were too far away from the centroids were bound to be noisy, and this was
confirmed when we saw the results. We chose an arbitary threshold of two standard deviations from
the mean (+2), and almost all the images with distance from centroid greater than this threshold
turned out to be noisy. On an average, we were able to remove around 18 noisy images per class
using this outlier detection cascade. The entire cascade is shown in Figure 2(b). We used scikit-learn
[8] for K-means and other calculations.

4.3 Supervised Learning

We split our dataset into train and dev sets in 4:1 ratio. The next step was to train a classifier on the
clean data that we had accumulated. We decided to implement and compare the following two supervised
methods:

Bag of Visual Words SVM: We extract local features from the training image sets using SIFT.
This essentially converts the image into a feature vector. The next step is codebook generation.
KMeans (K=100) clustering over these local features gives us the centroids (vocabulary), and then
each image is represented as a frequency distribution over this vocabulary. A linear SVM classifier
is trained over this representation of images. In our experiments, we used an adapted version of
MATLAB Bag of Visual Words Model in the Computer Vision Toolbox to implement this baseline
model [9).

www.all-hashtag.com

	Introduction
	Related Work
	Zero Shot Learning Methods
	ConSE
	HierSE

	Supervised Hashtag Prediction
	Data Collection
	Data Cleaning
	Supervised Learning

	Hashtag Prediction
	Experiments and Results
	Conclusion
	Flask Server for Front End
	Future Work
	Contributions
	Code

