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Abstract 
 

There are two common main approaches to ML recommender systems, feedback-based 
systems and content-based systems. Feedback based systems look at user activity, examining 
explicit feedback such as Movie or product reviews and/or implicit feedback such as time spent 
viewing an item or show, total number of pageviews, etc. Content based systems look at item 
metadata, tagging, and sometimes the content itself, sometimes with a complex understanding 
of relevance of each of these items, to create mappings or clusters around similar items to 
recommend. Here I look at an extension of the most common feedback-based system, 
collaborative filtering. One of the most common ways to solve a collaborative filtering problem is 
using low-rank matrix factorization and the Alternating Least Squares method. I implement and 
examine the weighted version of this algorithm (WALS), particularly in the context of the 
Movielens movie review dataset. While WALS is commonly used for implicit datasets, I look at 
how it has meaning for explicit datasets. 
 

1. Introduction 
Collaborative Filtering is a common and powerful way for building feedback-based 

recommender systems. As opposed to content based systems looking at what we know about 
items and clustering them accordingly to recommend similar products to a user’s activity history, 
we look primarily for a weigh to correlate user’s activity with other users history to identify similar 
users and suggest items not in common between the two users that we have reason to believe 
will be good recommendations. This has important applications in e-commerce, media 
recommender systems, and more and more commercial applications. Collaborative Filtering 
does suffer from a ‘cold start’ problem, that is, until we see feedback and activity for either a 
new user or item, we have no way to profile it and recommend it to other users. There are 
various methods of solving this, such as using a combination of content based methods or 
making estimations of the latent factors that would eventually be solved once the item had more 
activity. 

There are two many areas of feedback we can examine, implicit and explicit feedback. 
Explicit would include user reviews, very common in e-commerce and media applications such 
as Netflix.1 Implicit would be time spent on various pages of a website. High quality explicit 
feedback tends to yield great results and can be implemented more easily in an algorithm. 
Implicit feedback is trickier, as we have to interpret when a user’s activity implies preference vs 
non-preference or anti-preference. We have to build an idea of preference, as well as 
confidence in our assumptions of preference. Traditionally Collaborative Filtering models have 
tackled explicit feedback problems, because of the high quality data and the ease of achieving 



great results. There are variety of methods of tackling implicit datasets, which will be discussed 
below. 

Low-rank matrix factorization is a common way of solving this problem. There are various 
methods of computing the low-rank representations, including ‘Alternating Least Squares’ (ALS) 
and the weighted version (WALS). ALS is more a classic approach, while Weight Alternating 
Least Squares offers the data scientist a great deal of flexibility in modeling the data while still 
retaining the ease of use and low-compute cost inherent in Collaborative Filtering. 

In this paper, I will implement, explore and compare the WALS approach to collaborative 
filtering, in particular for explicit-preference datasets as opposed to implicit-preference datasets 
where this is more common. I’ll use the popular MovieLens Movie Recommendation Dataset. 

2. Theory 

2. 1 Low-Rank Matrix Factorization 
Collaborative filtering through low-rank matrix factorization is a way of taking a sparse matrix 

of users and ratings, assuming a certain number of latent factors (k), and factoring out a 
lower-rank representation of all the users and items. Can be roughly interpreted as ‘genres’ in 
Movielens dataset. This has a few advantages. It is computationally efficient for large datasets, 
and easily scales into the Millions of users and items. It is particularly easy to compute the 
suggested rating for a given item. Also, it has proven great at modeling complicated 
relationships between users and items with the ability to decompose each user and item to 
k-factors. 

2.2 Alternating Least Squares 
One of the most common methods of solving the Low-Rank Matrix Factorization problem is 

using Alternating Least Squares. First let’s example the row factor and column factor matrices 
that we’re looking to compute: 
 
 

 



Figure 1. The goal of ALS is to factor out U’ and V from sparse ratings matrix R 
 
We have a sparse matrix R, sparse meaning 99% or more of the entries are 0, when we 
consider all known ratings of items m by users n. We can use the following loss function to set 
U’ and V such that we lose the least amount of information possible: 
 
 

 
 
There are regularization terms on both the size of U and V to prevent overfitting. This can be 
easily solved when we recognize that setting the user factors constant results in a quadractic 
loss function that can be easily optimized. The process then becomes:  

1. When either user-factors or item-factors is held constant, Loss becomes quadratic and 
we can then optimize, alternating rows and columns 

2. Set row constant 
3. Set derivative to 0 and solve 
4. Repeat for constant column 

 

                   

                          

   

                       
 
This process usually converges in as small as 8-10 iterations, even for large sparse matrices. 
Now to approximate a rating, a fairly simple low-rank calculation: 

 
Calculating all ratings for a user that can then be easily sorted for a recommenation amounts to 
multiplying: 

 
 

2.3 Weighted Alternating Least Squares 
Weighted Alternating Least Squares (WALS) then becomes the weighted case of ALS with a 

Weight matrix W like below: 

 
W will take different meanings depending on the type of dataset and desired effect on the data. 
In particular for explicit datasets, using a linear scaling is common. 

https://www.codecogs.com/eqnedit.php?latex=L%20%3D%20%5Csum_%7Bm%2Cn%7D(R_m_n%20-%20U_m%5ET%20%5Ccdot%20V_n)%5E2%20%2B%20%5Clambda%5Csum_%7Bm%7D%7C%7CU_m%7C%7C%5E2%20%2B%20%5Clambda%5Csum_%7Bn%7D%7C%7CV_n%7C%7C%5E2%0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cfrac%7B%20%5Cpartial%20L%20%7D%7B%20%5Cpartial%20U_m%7D%20%3D%20-2%20%5Csum_%7Bn%7D(R_m_n%20-%20U_m%5ET%20%5Ccdot%20V_n)V_n%5ET%20%2B%202%20%5Clambda%20U_m%5ET%0
https://www.codecogs.com/eqnedit.php?latex=0%20%3D%20-(R_m%20-%20U_m%5ET%20V%5ET)Y%20%2B%20%5Clambda%20U_m%5ET%0
https://www.codecogs.com/eqnedit.php?latex=U_m%5ET(V%5ET%20V%20%2B%20%5Clambda%20I)%20%3D%20R_m%20Y%20%0
https://www.codecogs.com/eqnedit.php?latex=U_m%5ET%20%3D%20R_mY(Y%5ETY%2B%5Clambda%20I)%5E-%5E1%0
https://www.codecogs.com/eqnedit.php?latex=R_m_n%20%3D%20U_m%5ET%20%5Ccdot%20V_n%0
https://www.codecogs.com/eqnedit.php?latex=R_m%3DU_M%5ET%20%5Ccdot%20V%0
https://www.codecogs.com/eqnedit.php?latex=L%5Ew%20%3D%20W%20%5Ccirc%20%5Csum_%7Bm%2Cn%7D(R_m_n%20-%20U_m%5ET%20%5Ccdot%20V_n)%5E2%20%0


  unobserved weight + function of observed weight 

  sum of number of non-zero entries for each column (reviews per movie) 

              linearly (explicit) scaling - scale down reviews of often-reviewed movies 
 
This is the setup we will use with the MovieLens dataset to essentially normalize the signal for 
each movie. In essence, we are looking to decrease the signal for movies that are rated more 
often than movies that aren’t, in the hopes that we’re more likely to recommend a less seen 
movie. In general, this type of weighting allows us to more flexibly model preferences and gives 
us better results.2 

 
For implicit datasets, more common with WALS. 

                 exponential(implicit) scaling 
 
This is more common with web traffic analysis, or any dataset where we believe we have an 
exponential distribution of our signal to the perceived preference. 
 

3. Previous Work 
 

Yifan Hu, Yehuda Koren, and Chris Volinsky of AT&T Labs Research examined a variety of 
methods of modeling implicit feedback datasets with WALS. In particular they observed on 
set-top-TV player systems that it was helpful to have a minimum confidence in a given rating, 
represented by  , as well as to calculate two separate magnitudes for preference and 
confidence levels in that preference. The also noted it was essential to take all user actions into 
account, including actions which indicated 0 preference. 

TensorFlow conveniently includes a WALS matrix factorization class, which can also be 
simplified to ALS by not weighting either the rows or columns 
(tf.contrib.factorization.WALSModel). 

 

4. Our Model and Data 
In this section I describe the model that I implemented on the MovieLens dataset and, in 

particular, the hyper-parameter tuning required to achieve better results with WALS. This is of 
particular interest, as WALS converges relatively quickly (8-10 epochs), though running for 
longer often does achieve slight improvements in test accuracy (usually 0.1% or worse after 10 
epochs). 

 

https://www.codecogs.com/eqnedit.php?latex=w_m_n%20%3D%20%5Comega_0%20%2B%20%5Cmathit%7Bf%7D(c_m)%0
https://www.codecogs.com/eqnedit.php?latex=c_m%3D%5Csum_%7Bm%2Cn%7D%20%5Cmathit%7Bif%7D%20R_m_n%3E0%0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathit%7Bf%7D(c_m)%3D%5Cfrac%7B%5Comega_k%7D%7Bc_m%7D%0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathit%7Bf%7D%3D(%5Cfrac%7B1%7D%7Bc_m%7D)%5Ee%0
https://www.codecogs.com/eqnedit.php?latex=%5Comega_o%0


4.1 Data Acquisition 
There are several iterations of the MovieLens dataset, ranging in sizes, age, and 

cleanliness. I primarilyi worked with the more recent experimental 100k rating dataset that 
consists of 1,000 users, 1,700 movies, and 100k ratings. This dataset happens to be particularly 
clean and relatively normalized. Each user has at least 20 reviews. I loaded the data into 
Google’s BigQuery cloud tool to run some basic observations about the distributions in the 
dataset: 

 

 
Figure 2. Reviews per user in MovieLens dataset 
 

 
Figure 3. Percentiles for Reviews per User Distribution 
 

 
Figure 4. Mean and distribution of reviews based on clustered reviewers 
 

 
Figure 5. Distribution of individual Standard Deviations 
 
 



In general what we find is a very clean, consistent datasets. There appear to be few if any 
anomaly or noisy users with wide spreads in reviews, abnormal means, etc. Similar analysis on 
the number of reviews per movie indicate there was a minimum number of reviews for each, in 
general, though there was a spread. 

4.2 Pre Processing 
Aside from analysis, the most notable thing done in pre-processing was removing any user 

and/or movie from the 10% test set that did not exist in the training set, as this would constitue a 
cold-start item and thus our model would have no real predictive power. 

4.3 Implementation 
The model was implemented using the WALSModel module in TensorFlow. In particular, the 

WALSModel requires sparse tensors as inputs for the ratings matrix, an ‘unobserved weight’ 
corresponding to   and either row and column weight scalars or entire vectors. In this 
use-case I chose not to normalize or alter the user weights and focus on movie weights instead, 
in particular using a linear scaling instead of an exponential scaling. The weights for a given 
column (movie) were scaled down as number of reviews per movie grew. In essence, a movie 
with 10 reviews would have a weight 10x the size of a movie with 100 reviews as such: 

 
   

  

  
 

4.4 Hyper-Parameter Tuning 
Since the WALS and ALS algorithms converge relatively quickly, a large part of the focus 

was tuning the various hyper-parameters for optimal performance, including regularization 
weight, unobserved weight   and column-factor weight  . To achieve this, I setup the 
algorithm to run in Google Cloud Platforms’ Machine Learning Engine on GPUs with 
‘hyper-parameter tuning’ enabled. This is based on the Google Vizier service which enables me 
to specify a variety of hyper parameters to tune, their possible ranges and scale type (linear, 
logarithmic, reverse logarithmic), as well as the output metric (test RMSE) to optimize (either 
maximize or minimize), and then a number of total runs and maximum parallel runs to train and 
test the algorithm. 

Vizier is a google-internal as well as now external through GCP black-box optimization 
algorithm, particularly helpful for tuning hyper-parameters. For studies under a thousand trials, 
Vizier defaults to using Batched Gaussian Process Bandits to manage explore / exploit 
trade-offs, an appropriate fundamentally Bayesian in nature.3 

 

https://www.codecogs.com/eqnedit.php?latex=%5Comega_0%0
https://www.codecogs.com/eqnedit.php?latex=w_m_n%20%3D%20%5Comega_0%20%2B%20%5Cmathit%7Bf%7D(c_m)%0
https://www.codecogs.com/eqnedit.php?latex=c_m%3D%5Csum_%7Bm%2Cn%7D%20%5Cmathit%7Bif%7D%20R_m_n%3E0%0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathit%7Bf%7D(c_m)%3D%5Cfrac%7B%5Comega_k%7D%7Bc_m%7D%0
https://www.codecogs.com/eqnedit.php?latex=%5Comega_0%0
https://www.codecogs.com/eqnedit.php?latex=%5Comega_k%0


 
Figure 6. Hyperparameter search space spec 
 

4.5 Model Training Results 
After identifying best hyper-parameters for WALS as well as best for ALS, the results were 

plotted and WALS showed a 3.1% improvement over ALS from an RMSE of 0.97062 to 
0.94064. 

 



 
Figure 7. Train / Test error for WALS and ALS. 
 
This improvement of 3.1% is good, and gets us closer to the well known 0.83 value of 

unweighted collaborative filtering on the 20 Million ALS number. I did not run the experiment on 
the 20 Million rating dataset primarily because of time and cost related to hyper-tuning. The 
dataset is too large to fit into memory for K80 GPUs and takes 1.0-1.5 minutes per epoch on 
CPU and requires a large amount of memory. 

I observed an interesting condition where either the column factor weight or the 
regularization value would always reach the edge of the hyperparameter space. Growing the 
search space would always result in one or the other growing further while the unobserved 
weight was trending towards 0. Ultimately the RMSE was stable the resulting predicted ratings 
were sensical, so an equilibrium was reached, there was simply an interesting scaling of the 
solution space. 

The final hyper-parameters for the WALS use case are below. Some of the factors are fairly 
large, due to this scaling condition I witnessed. 

 

 



Figure 8. Final Hyper-parameter selection values 
 

5 Results Analysis 
The results showed a 3.1% improvement, though greater improvement could be hoped for in 

a larger, more disparate datasets such as the 20 Million dataset or something more noisy. We 
did show that WALS, an algorithm often used in implicit-feedback collaborative filtering 
scenarios, still showed an improved in this explicit-feedback scenario. 

The previous analysis of the data showed a fairly normalized dataset. Comparing the 20 
million rating dataset to the 100k datasets, its clear that the is a larger spread of movies, i.e. 
there are more popular movies that take a majority of the reviews and a much longer long-tail of 
rarely reviewed movies. In particular, looking at the variance to mean ratio (VMR), also called 
dispersion index, we see there is more likelihood for improvement with the 20 Million dataset 
with a 12.7k VMR compared to 0.1k VMR. 

 

 
Figure 9. Dispersion Ratio of 100k dataset and then 20M dataset, 0.1k to 12.7k 

 

6 Discussion 
We’ve used and proven out WALS as a potentially more powerful alternative to straight ALS 

based collaborative filtering, even for explicit-feedback datasets. The linear scaling still 
normalizes the signal and improves RMSE on the test set. This could potentially improve the 
results more than the 3.1% seen with a more ‘real world’ or noisy, skewed dataset. Next steps 
would be to try on the MovieLens 20 Million rating set. WALS provides a lot of flexibility in 
modeling user and item preference. For example, we could experiment with weighting users 
based on individual mean and variance, also weighting down users that we see as anomalous 
or unreliable, or perhaps a given userid that is a mix of multiple users. We can still enjoy the 
benefits of collaborative filtering, including the quick convergence and the ease of predicting 
future ratings with a simple dot product, while imparting additional opinions onto the data. 

Next steps would also be to implement WALS on an implicit dataset and compare results, 
for example examining click stream data, since WALS is more common in these use cases. 
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