
Weighted Alternating Least Squares (WALS) for Movie Recommendations)
Drew Hodun

SCPD

Abstract

There are two common main approaches to ML recommender systems, feedback-based
systems and content-based systems. Feedback based systems look at user activity, examining
explicit feedback such as Movie or product reviews and/or implicit feedback such as time spent
viewing an item or show, total number of pageviews, etc. Content based systems look at item
metadata, tagging, and sometimes the content itself, sometimes with a complex understanding
of relevance of each of these items, to create mappings or clusters around similar items to
recommend. Here I look at an extension of the most common feedback-based system,
collaborative filtering. One of the most common ways to solve a collaborative filtering problem is
using low-rank matrix factorization and the Alternating Least Squares method. I implement and
examine the weighted version of this algorithm (WALS), particularly in the context of the
Movielens movie review dataset. While WALS is commonly used for implicit datasets, I look at
how it has meaning for explicit datasets.

1. Introduction
Collaborative Filtering is a common and powerful way for building feedback-based

recommender systems. As opposed to content based systems looking at what we know about
items and clustering them accordingly to recommend similar products to a user’s activity history,
we look primarily for a weigh to correlate user’s activity with other users history to identify similar
users and suggest items not in common between the two users that we have reason to believe
will be good recommendations. This has important applications in e-commerce, media
recommender systems, and more and more commercial applications. Collaborative Filtering
does suffer from a ‘cold start’ problem, that is, until we see feedback and activity for either a
new user or item, we have no way to profile it and recommend it to other users. There are
various methods of solving this, such as using a combination of content based methods or
making estimations of the latent factors that would eventually be solved once the item had more
activity.

There are two many areas of feedback we can examine, implicit and explicit feedback.
Explicit would include user reviews, very common in e-commerce and media applications such
as Netflix.1 Implicit would be time spent on various pages of a website. High quality explicit
feedback tends to yield great results and can be implemented more easily in an algorithm.
Implicit feedback is trickier, as we have to interpret when a user’s activity implies preference vs
non-preference or anti-preference. We have to build an idea of preference, as well as
confidence in our assumptions of preference. Traditionally Collaborative Filtering models have
tackled explicit feedback problems, because of the high quality data and the ease of achieving

great results. There are variety of methods of tackling implicit datasets, which will be discussed
below.

Low-rank matrix factorization is a common way of solving this problem. There are various
methods of computing the low-rank representations, including ‘Alternating Least Squares’ (ALS)
and the weighted version (WALS). ALS is more a classic approach, while Weight Alternating
Least Squares offers the data scientist a great deal of flexibility in modeling the data while still
retaining the ease of use and low-compute cost inherent in Collaborative Filtering.

In this paper, I will implement, explore and compare the WALS approach to collaborative
filtering, in particular for explicit-preference datasets as opposed to implicit-preference datasets
where this is more common. I’ll use the popular MovieLens Movie Recommendation Dataset.

2. Theory

2. 1 Low-Rank Matrix Factorization
Collaborative filtering through low-rank matrix factorization is a way of taking a sparse matrix

of users and ratings, assuming a certain number of latent factors (k), and factoring out a
lower-rank representation of all the users and items. Can be roughly interpreted as ‘genres’ in
Movielens dataset. This has a few advantages. It is computationally efficient for large datasets,
and easily scales into the Millions of users and items. It is particularly easy to compute the
suggested rating for a given item. Also, it has proven great at modeling complicated
relationships between users and items with the ability to decompose each user and item to
k-factors.

2.2 Alternating Least Squares
One of the most common methods of solving the Low-Rank Matrix Factorization problem is

using Alternating Least Squares. First let’s example the row factor and column factor matrices
that we’re looking to compute:

Figure 1. The goal of ALS is to factor out U’ and V from sparse ratings matrix R

We have a sparse matrix R, sparse meaning 99% or more of the entries are 0, when we
consider all known ratings of items m by users n. We can use the following loss function to set
U’ and V such that we lose the least amount of information possible:

There are regularization terms on both the size of U and V to prevent overfitting. This can be
easily solved when we recognize that setting the user factors constant results in a quadractic
loss function that can be easily optimized. The process then becomes:

1. When either user-factors or item-factors is held constant, Loss becomes quadratic and
we can then optimize, alternating rows and columns

2. Set row constant
3. Set derivative to 0 and solve
4. Repeat for constant column

This process usually converges in as small as 8-10 iterations, even for large sparse matrices.
Now to approximate a rating, a fairly simple low-rank calculation:

Calculating all ratings for a user that can then be easily sorted for a recommenation amounts to
multiplying:

2.3 Weighted Alternating Least Squares
Weighted Alternating Least Squares (WALS) then becomes the weighted case of ALS with a

Weight matrix W like below:

W will take different meanings depending on the type of dataset and desired effect on the data.
In particular for explicit datasets, using a linear scaling is common.

https://www.codecogs.com/eqnedit.php?latex=L%20%3D%20%5Csum_%7Bm%2Cn%7D(R_m_n%20-%20U_m%5ET%20%5Ccdot%20V_n)%5E2%20%2B%20%5Clambda%5Csum_%7Bm%7D%7C%7CU_m%7C%7C%5E2%20%2B%20%5Clambda%5Csum_%7Bn%7D%7C%7CV_n%7C%7C%5E2%0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cfrac%7B%20%5Cpartial%20L%20%7D%7B%20%5Cpartial%20U_m%7D%20%3D%20-2%20%5Csum_%7Bn%7D(R_m_n%20-%20U_m%5ET%20%5Ccdot%20V_n)V_n%5ET%20%2B%202%20%5Clambda%20U_m%5ET%0
https://www.codecogs.com/eqnedit.php?latex=0%20%3D%20-(R_m%20-%20U_m%5ET%20V%5ET)Y%20%2B%20%5Clambda%20U_m%5ET%0
https://www.codecogs.com/eqnedit.php?latex=U_m%5ET(V%5ET%20V%20%2B%20%5Clambda%20I)%20%3D%20R_m%20Y%20%0
https://www.codecogs.com/eqnedit.php?latex=U_m%5ET%20%3D%20R_mY(Y%5ETY%2B%5Clambda%20I)%5E-%5E1%0
https://www.codecogs.com/eqnedit.php?latex=R_m_n%20%3D%20U_m%5ET%20%5Ccdot%20V_n%0
https://www.codecogs.com/eqnedit.php?latex=R_m%3DU_M%5ET%20%5Ccdot%20V%0
https://www.codecogs.com/eqnedit.php?latex=L%5Ew%20%3D%20W%20%5Ccirc%20%5Csum_%7Bm%2Cn%7D(R_m_n%20-%20U_m%5ET%20%5Ccdot%20V_n)%5E2%20%0

 unobserved weight + function of observed weight

 sum of number of non-zero entries for each column (reviews per movie)

 linearly (explicit) scaling - scale down reviews of often-reviewed movies

This is the setup we will use with the MovieLens dataset to essentially normalize the signal for
each movie. In essence, we are looking to decrease the signal for movies that are rated more
often than movies that aren’t, in the hopes that we’re more likely to recommend a less seen
movie. In general, this type of weighting allows us to more flexibly model preferences and gives
us better results.2

For implicit datasets, more common with WALS.

 exponential(implicit) scaling

This is more common with web traffic analysis, or any dataset where we believe we have an
exponential distribution of our signal to the perceived preference.

3. Previous Work

Yifan Hu, Yehuda Koren, and Chris Volinsky of AT&T Labs Research examined a variety of
methods of modeling implicit feedback datasets with WALS. In particular they observed on
set-top-TV player systems that it was helpful to have a minimum confidence in a given rating,
represented by , as well as to calculate two separate magnitudes for preference and
confidence levels in that preference. The also noted it was essential to take all user actions into
account, including actions which indicated 0 preference.

TensorFlow conveniently includes a WALS matrix factorization class, which can also be
simplified to ALS by not weighting either the rows or columns
(tf.contrib.factorization.WALSModel).

4. Our Model and Data
In this section I describe the model that I implemented on the MovieLens dataset and, in

particular, the hyper-parameter tuning required to achieve better results with WALS. This is of
particular interest, as WALS converges relatively quickly (8-10 epochs), though running for
longer often does achieve slight improvements in test accuracy (usually 0.1% or worse after 10
epochs).

https://www.codecogs.com/eqnedit.php?latex=w_m_n%20%3D%20%5Comega_0%20%2B%20%5Cmathit%7Bf%7D(c_m)%0
https://www.codecogs.com/eqnedit.php?latex=c_m%3D%5Csum_%7Bm%2Cn%7D%20%5Cmathit%7Bif%7D%20R_m_n%3E0%0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathit%7Bf%7D(c_m)%3D%5Cfrac%7B%5Comega_k%7D%7Bc_m%7D%0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathit%7Bf%7D%3D(%5Cfrac%7B1%7D%7Bc_m%7D)%5Ee%0
https://www.codecogs.com/eqnedit.php?latex=%5Comega_o%0

4.1 Data Acquisition
There are several iterations of the MovieLens dataset, ranging in sizes, age, and

cleanliness. I primarilyi worked with the more recent experimental 100k rating dataset that
consists of 1,000 users, 1,700 movies, and 100k ratings. This dataset happens to be particularly
clean and relatively normalized. Each user has at least 20 reviews. I loaded the data into
Google’s BigQuery cloud tool to run some basic observations about the distributions in the
dataset:

Figure 2. Reviews per user in MovieLens dataset

Figure 3. Percentiles for Reviews per User Distribution

Figure 4. Mean and distribution of reviews based on clustered reviewers

Figure 5. Distribution of individual Standard Deviations

In general what we find is a very clean, consistent datasets. There appear to be few if any
anomaly or noisy users with wide spreads in reviews, abnormal means, etc. Similar analysis on
the number of reviews per movie indicate there was a minimum number of reviews for each, in
general, though there was a spread.

4.2 Pre Processing
Aside from analysis, the most notable thing done in pre-processing was removing any user

and/or movie from the 10% test set that did not exist in the training set, as this would constitue a
cold-start item and thus our model would have no real predictive power.

4.3 Implementation
The model was implemented using the WALSModel module in TensorFlow. In particular, the

WALSModel requires sparse tensors as inputs for the ratings matrix, an ‘unobserved weight’
corresponding to and either row and column weight scalars or entire vectors. In this
use-case I chose not to normalize or alter the user weights and focus on movie weights instead,
in particular using a linear scaling instead of an exponential scaling. The weights for a given
column (movie) were scaled down as number of reviews per movie grew. In essence, a movie
with 10 reviews would have a weight 10x the size of a movie with 100 reviews as such:

4.4 Hyper-Parameter Tuning
Since the WALS and ALS algorithms converge relatively quickly, a large part of the focus

was tuning the various hyper-parameters for optimal performance, including regularization
weight, unobserved weight and column-factor weight . To achieve this, I setup the
algorithm to run in Google Cloud Platforms’ Machine Learning Engine on GPUs with
‘hyper-parameter tuning’ enabled. This is based on the Google Vizier service which enables me
to specify a variety of hyper parameters to tune, their possible ranges and scale type (linear,
logarithmic, reverse logarithmic), as well as the output metric (test RMSE) to optimize (either
maximize or minimize), and then a number of total runs and maximum parallel runs to train and
test the algorithm.

Vizier is a google-internal as well as now external through GCP black-box optimization
algorithm, particularly helpful for tuning hyper-parameters. For studies under a thousand trials,
Vizier defaults to using Batched Gaussian Process Bandits to manage explore / exploit
trade-offs, an appropriate fundamentally Bayesian in nature.3

https://www.codecogs.com/eqnedit.php?latex=%5Comega_0%0
https://www.codecogs.com/eqnedit.php?latex=w_m_n%20%3D%20%5Comega_0%20%2B%20%5Cmathit%7Bf%7D(c_m)%0
https://www.codecogs.com/eqnedit.php?latex=c_m%3D%5Csum_%7Bm%2Cn%7D%20%5Cmathit%7Bif%7D%20R_m_n%3E0%0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathit%7Bf%7D(c_m)%3D%5Cfrac%7B%5Comega_k%7D%7Bc_m%7D%0
https://www.codecogs.com/eqnedit.php?latex=%5Comega_0%0
https://www.codecogs.com/eqnedit.php?latex=%5Comega_k%0

Figure 6. Hyperparameter search space spec

4.5 Model Training Results
After identifying best hyper-parameters for WALS as well as best for ALS, the results were

plotted and WALS showed a 3.1% improvement over ALS from an RMSE of 0.97062 to
0.94064.

Figure 7. Train / Test error for WALS and ALS.

This improvement of 3.1% is good, and gets us closer to the well known 0.83 value of

unweighted collaborative filtering on the 20 Million ALS number. I did not run the experiment on
the 20 Million rating dataset primarily because of time and cost related to hyper-tuning. The
dataset is too large to fit into memory for K80 GPUs and takes 1.0-1.5 minutes per epoch on
CPU and requires a large amount of memory.

I observed an interesting condition where either the column factor weight or the
regularization value would always reach the edge of the hyperparameter space. Growing the
search space would always result in one or the other growing further while the unobserved
weight was trending towards 0. Ultimately the RMSE was stable the resulting predicted ratings
were sensical, so an equilibrium was reached, there was simply an interesting scaling of the
solution space.

The final hyper-parameters for the WALS use case are below. Some of the factors are fairly
large, due to this scaling condition I witnessed.

Figure 8. Final Hyper-parameter selection values

5 Results Analysis
The results showed a 3.1% improvement, though greater improvement could be hoped for in

a larger, more disparate datasets such as the 20 Million dataset or something more noisy. We
did show that WALS, an algorithm often used in implicit-feedback collaborative filtering
scenarios, still showed an improved in this explicit-feedback scenario.

The previous analysis of the data showed a fairly normalized dataset. Comparing the 20
million rating dataset to the 100k datasets, its clear that the is a larger spread of movies, i.e.
there are more popular movies that take a majority of the reviews and a much longer long-tail of
rarely reviewed movies. In particular, looking at the variance to mean ratio (VMR), also called
dispersion index, we see there is more likelihood for improvement with the 20 Million dataset
with a 12.7k VMR compared to 0.1k VMR.

Figure 9. Dispersion Ratio of 100k dataset and then 20M dataset, 0.1k to 12.7k

6 Discussion
We’ve used and proven out WALS as a potentially more powerful alternative to straight ALS

based collaborative filtering, even for explicit-feedback datasets. The linear scaling still
normalizes the signal and improves RMSE on the test set. This could potentially improve the
results more than the 3.1% seen with a more ‘real world’ or noisy, skewed dataset. Next steps
would be to try on the MovieLens 20 Million rating set. WALS provides a lot of flexibility in
modeling user and item preference. For example, we could experiment with weighting users
based on individual mean and variance, also weighting down users that we see as anomalous
or unreliable, or perhaps a given userid that is a mix of multiple users. We can still enjoy the
benefits of collaborative filtering, including the quick convergence and the ease of predicting
future ratings with a simple dot product, while imparting additional opinions onto the data.

Next steps would also be to implement WALS on an implicit dataset and compare results,
for example examining click stream data, since WALS is more common in these use cases.

References

1. J. Bennet and S. Lanning, “The Netflix Prize”, KDD Cup and Workshop, 2007.
www.netflixprize.com.

http://www.netflixprize.com/

2. Hu, Yifan, Koren, Yehuda, and Volinsky, Chris. "Collaborative Filtering for Implicit Feedback
Datasets - Yifan Hu." http://yifanhu.net/PUB/cf.pdf. Accessed 15 Dec. 2017.

3. Daniel Golovin, Benjamin Solnik, Subhodeep moitra, Greg Kochanski, John Karro, and D.
Sculley. "Google Vizier: A Service for Black-Box ... - Research at Google." Accessed December
15, 2017. https://research.google.com/pubs/archive/46180.pdf.

http://yifanhu.net/PUB/cf.pdf
https://research.google.com/pubs/archive/46180.pdf

