Deep RL For Starcraft 11

Andrew G. Chang
agchangl@stanford.edu

Abstract

Games have proven to be a challenging yet fruitful domain for reinforcement
learning. One of the main areas that Al agents have surpassed human abilities are
in board games, such as Go, where much of the difficulty lines in the exponentially
large state space. Indeed, great progress has been made in building agents that can
defeat the world’s best in these games, such as AlphaGo. However, with highly-
skilled competitive video games, the bar has risen even higher. DeepMind’s recent
release of the Starcraft II Learning Environment (SCLE) and their accompanying
paper [3]] poses the grand challenge of building an agent that can defeat best human
pros. This project takes a introductory approach at building an agent that can play
Starcraft.

1 Introduction

Starcraft II has been posed as the "grand new challenge" in reinforcement learning by DeepMind. It
is not difficult to see why. The game is a real-time strategy (RTS) game that has captivated the minds
of many casual and professional players due to its nuance and incredibly high skill cap. The game
requires a combination of long-term planning and real-time mechanical skill. In the professional
scene, the common format is a one-versus-one, however team games can be played. Therefore the
game is multi-agent on a global scale since players need to coordinate, but also multi-agent on a local
scale since the agent must control many individual units (workers, soldiers, etc). The game is also
partially observable since the agent can only see what is in their camera’s view and must actively
explore to gather information about the map and enemies. One of the primary reasons the game is so
difficult is because it requires constant multi-tasking, which requires mechanical skill and constant
focus. The player is constantly in balancing act of building their economy, base and army, as well
as controlling their current army to explore, defend, or attack. Given the difficulty of this game,
SCLE provides a way to provide simpler subtasks of the game which are called "mini-games". These
mini-games are meant to represent a subset of what an agent may need to learn to perform well at the
full game. In my project, I chose the "DefeatRoaches" mini-game, which is supposed to test an agent’s
ability in a difficult combat scenario. The initial state starts with the agent controlling 9 marines
against 5 roaches and the agent must kill as many roaches in two minutes. Each roach that is killed
results in +10 reward whereas each marine killed results in -1 reward. If all roaches are killed before
the time limit, five more are spawned with the agent also receiving five more marines. Note roaches
are much more powerful units than marines, so the agent must devise some effective strategy to be
successful. More formally, the mini-game can be modeled as a finite-horizon MDP with discrete state
and actions and deterministic transitions. However, the state spaces and action spaces are very large:
there are 101938719 possible actions and the states can effectively be treated as continuous since
some features take on scalar values. My project trains an agent using the Asynchronous Advantage
Actor Critic (A3C) method with a convolutional neural net to model the policy function.

2 Related Work

In DeepMind’s paper [3] that introduces the problem, they present three baseline models, all using
A3C but varying the network architecture. The first model is the same used in their Atari paper [2]].

The second model uses a fully convolutional model which outputs spatial policies directly from the
output of resolution-preserving convolutional layers, i.e. there is no fully-connected layer before
the spatial policy. This is intended to preserve the spatial structure of the input. The third model
is the same as the second, except with a LSTM module. They also present a supervised learning
approach by using replay-data to fit a value function to predict values for each state, which can then
be used directly as a policy. Previous environments have also been built for the original Starcraft,
with accompanying models [4], however they differ in a fundamental way since their agent interface
is more programmatic rather than human-centric. SCLE models actions similar to how a user would
play, for example instead of sending individual commands to units directly, the agent has to select the
unit first by drawing a rectangle around it (or using special actions to select idle units), and then issue
commands to the selected unit. This makes the action space more complicated, but more akin to how
a human interacts with the game.

3 Environment & Features

{y Starcraft Viewer | - X

a- Attack

h - MoveHoeldPosition
m - Move

p - MovePatrol

s - Stop

Figure 1: SCLE Feature Layers and pygame Ul

The environment provides a run-loop in which the agent can perform an action in lockstep with
the game simulation, so the agent can take as long as it likes to compute which action to take. The
environment can be configured so the agent can act every n game steps, in my project [use n = 8
which corresponds to roughly 180 actions-per-minute similar to the rate of actions performed by a
skilled human. If the agent were to act faster, for example every game step, then this would give
an unfair advantage to the agent since it can play the game at a speed faster than what is humanly
possible, although the benefits probably aren’t too great. As mentioned before, the action space is
modeled to be similar to a human interface. More specifically, the format of the action is a compound
action consisting of a base action ay and then a variable number of arguments a1, ..., a; each of
which have variable dimension. An example action that moves a selected unit is "Move_screen",
which takes a boolean argument "queued [2]" which determines if this command should be enqueued
instead of performed instantly, and "screen [84,84]" which takes two numbers that represent a point
on the discretized screen. At each state the number of available actions varies, but is presented to the
agent in its state so it will know which actions are valid. The features consist of spatial features and
non-spatial features. The spatial features consist of two sets of feature layers, minimap and screen.
Minimap corresponds to a small minimap portion of the screen that is a downsized view of the entire
map and screen is the primary view of some subsection of the map, depending on where the camera
is. The feature layers represent pertinent information to an agent that is on the screen, for example
the IDs of units on the screen. The screen feature is a [n, n, 13] tensor where n is configurable and
the minimap is [64, 64, 7]: in this project n = 64 so it matches the minimap. There are a number of
non-spatial features, but for this project I only chose a subset of them: general player information
[13, 1], multi-select [50, 7], and available actions [524]. General player information includes things

like resource counts, multi-select contains unit information (health, shields) in the current selection,
and available actions is essentially a one-hot vector of actions available to the agent at that state. This
means the flattened state vector is 82807 dimensional. The UI that displays the screen and feature
layers is shown in Figure 1 (note on Linux the full game graphics aren’t available, only a simplified
UI). Preprocessing is done on the features by normalizing scalar feature layers and log transforming
non-spatial scalar features since features may have varying scales.

4 Methods

The approach I took in my project is a policy gradient method, specifically Asynchronous Advantage
Actor Critic (A3C). This is the same approach as the DeepMind paper and it is one of the standard
approaches for training RL agents due to its flexibility, especially with large action spaces. A3C is a
on-policy method that tries to directly optimize the policy function 7y (s) by deriving an estimator
for the gradient. Our objective is to maximize the discounted sum of expected rewards: J(6) =
E[ZtT:O Y R(sy,ue)|mg(s)] = >, P(1;0)R(T) where 7 = s, ug, S1,U1], ..., ST, ur is an entire
trajectory in an episode (where u is the action taken), R is the sum of discounted rewards and P is
the probability of the trajectory. It can be shown that the gradient of this objective function does not
depend on the model dynamics and only on the term Vy log (7)) R(7(®)). [1]|. Therefore we can
perform gradient ascent updates to maximize expected rewards using the log of our policy function
and empirical rewards. In practice, to lower variance, the rewards are passed through an advantage
function which intuitively subtracts a baseline to measure the value of the chosen action compared to
the expected value of the state. Since our network now depends on a value function V' (), we also add
an output node from our network to estimate the value function by regressing it against the discounted
sum of rewards received from that state ;. The final term in the gradient update is an entropy
regularization which penalizes the policy for a low entropy policy, i.e. there isn’t much randomness.
This is to encourage exploration in the policy so it doesn’t greedily converge at a suboptimal strategy.
Therefore, the full gradient update is:

A(s,a)Volog(s) + 8Ve(V(s) — R)* +n> m(als) log m(als) (1)

where [and 7 are hyperparameters to control the contribution of those terms to the gradient. For this
project, [used § = 0.5 and = 0.001. The advantage function I used is the generalized advantage
estimation [3]] which uses exponentially weighted samples of TD residuals: vV (s¢11) — V(s¢) as an
estimator of the advantage.

4.1 Modeling Action Policies

As mentioned previously, SCLE provides an action space where a base action is chosen, ag, and based
on this choice, a variable number of arguments with a variable number of dimensions are chosen:
ai,...,a;. If a single action policy is chosen with the action space flattened, this would over a hundred
million actions in the single policy, and it would extremely sparse. Instead, for simplicity, policies
are modeled independently, namely the base action, and each argument dimension. This means for a
spatial argument, the x and y policies are modeled independently. This is a rather large assumption,
since arguments policies aren’t independent from the chosen base action nor even from each other, but
in practice it seems to work decently. Therefore when selecting an action from the policy, the agent
samples from the base action policy mg(ag|s), masking out unavailable actions, and then depending
on the base action chosen, samples from each argument policy dimension independently.

4.2 Network Architecture

The network architecture chosen is similar to the Atarinet model used in DeepMind’s Atari paper
[2]. Namely the spatial features are input into two convolutional layers, with 16 filters of size 5x5
and 32 filters of size 3x3, respectively. The nonspatial features are passed through a fully connected
layer with 32 units followed by a tanh non-linearity. The two spatial tensors are then flattened and
concatenated with the nonspatial fully-connected output and then passed through a fully-connected
layer with 512 units and ReLu nonlinearity. This vector is then passed through layers corresponding
to each action and argument policy, using a softmax to output probability distributions.

4.3 Training Algorithm

perf/reward_per_step perf/reward_per_episode

0.000 G000k 1.200M 1.800M 0.000 4.000k 3.000k 1200k 16.00k 20.00k

() (]

ra
[
ra
[

One critical part of A3C is the use of multiple actors updating a shared global network. This plays
the role of diversifying experiences the agent encounters and helps stabilize training issues due to
non-stationary distributions and correlation of the states being sampled, as states within an episode
are highly correlated. This is done in practice by running multiple actor threads which each have a
local network and a shared global network. The actors perform gradient updates to the global network
and synchronize their local networks to the global network at the beginning of each episode. This is
somewhat analogous to the target network used in Deep Q-Networks and using multiple actors at once
is similar to experience replay by decorrelating gradient updates with non-sequential experiences.
The training algorithm begins by receiving an initial state sy. The agent extracts spatial and nonspatial
features from the state and feeds it into the network to receive policies over actions and arguments,
as well as a value score for the state. The agent then samples these policies and performs action
a; and receives state s;; and reward r;. It stores chosen actions, arguments, rewards, states, and
values into a buffer, which will be used for backprop. After 40 iterations or the end of an episode, the
agent performs backprop using it’s state buffers, computed advantages using rewards and values, and
computed expected rewards for encountered states to regress the value function. The agent receives
the gradients and applies it to an optimizer to the global network. The agent then copies the global
network weights to its local network and repeats. My project used 8 actor threads, since 16 slows the
simulation down significantly on my computer, and trained for around 2 million steps with a learning
rate sampled from the range (1e — 5, 1e — 3). Two performance graphs are shown above, the rewards
per episode and per step: we can see the learning plateaus at around a million game steps.

5 Results & Discussion

Learnt Policy vs. Random Policy
&0 B Learnt Policy
@ Random Policy

40

i
: |||| IMIM HI ‘I ‘I‘H ‘ ||H||H| MH ‘m |||
neefarrr 1w

[

The learnt policy is compared with a random policy baseline over 100 trials: the learnt policy averages
17.64 with a max of 46 whereas the random policy has an average of 1.04 with 24 max. Human

game play is omitted from these trials since the Linux release doesn’t have the full game and has a
different UI, but the DeepMind paper reports an average of 40 for an experienced player, whereas
a professional player can get an average of 200. There is a wide skill gap in human policies, even
for a simple minigame, which is a true testament to the difficulty of the game in its full setting.
By analyzing the learnt policy, I observed the agent found a simple strategy, namely choosing to
attach the roaches from the top or bottom. Since the marines and roaches both start in a vertical line
formation, flanking the top or bottom of the line allows the marines to focus fire a single roach while
the other roaches need to move to attack. This swings the advantage in the marines favor, since a head
on fight would result in the marines losing, given they are much weaker units. Although a decent
strategy, the agent failed to learn very nuanced strategies which would get it to surpass a human level,
for example "microing" the units by moving damaged units away from focus and then re-engaging
them after, a common and effective high-level human strategy. I suspect these emergent behaviors
require a lot more experimentation with hyperparameters, since it is easy for the policy to converge
on a simple strategy if it can get a steady state of rewards and doesn’t explore the action space for
more nuanced strategies. I would note in the DeepMind paper, they report running 100 experiments
over randomly sampled hyperparameters and training over SO00M game steps, which is a large amount
of computing resources and time. During my different training attempts, I also observed difficulty in
stabilizing training as small changes in hyperparameters could cause the training to converge at a
bad strategy, or even diverge to get 0 score per episode. Future work could explore using different
RL training algorithms or techniques to stabilize training and make it less prone to instability due to
hyperparameter changes.

Figure 2: Marines spawn in vertical line and group and flank on top

5.1 Error Analysis

Unfortunately, the episodes for which agent received O score, and dropped the average substantially,
are episodes where the initial state causes degenerate values in the network causing NaNs in the
network. Some initial debugging suggests this could be due to some neurons having extremely large
weights so a state which triggered those neurons would underflow the softmax (I believe the default
tensorflow softmax implementation, i.e. tf.nn.softmax implements subtracting the largest logit).
Hopefully with more experimentation I can pinpoint the issue, e.g. more trials with different learning
rates. As for improving the policy to get out of this locally optimal strategy, I could experiment
with hyperparameter search over the entropy regularization term. This is the classic exploration-
exploitation tradeoff since the agent needs to explore different actions to learn good strategies and
is akin to changing ¢ in e-greedy. However, I suspect this will take a lot longer to train since some
of these more advanced strategies require more nuanced actions that can have much higher delay in
rewards rather than taking a locally optimal action: for example having a damaged marine run away
from fire instead of fighting to the death to kill a low-health roach, so it can re-engage later.

References

[1] Deep rl bootcamp policy gradient notes. https://drive.google.com/file/d/0BxXI_
RttTZAhY216RTMtanBpUnc/view.

[2] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller.
Playing Atari with Deep Reinforcement Learning. ArXiv e-prints, December 2013.

[3] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel. High-Dimensional Continuous
Control Using Generalized Advantage Estimation. ArXiv e-prints, June 2015.

[4] Y. Tian, Q. Gong, W. Shang, Y. Wu, and C. L. Zitnick. ELF: An Extensive, Lightweight and
Flexible Research Platform for Real-time Strategy Games. ArXiv e-prints, July 2017.

[5] O. Vinyals, T. Ewalds, S. Bartunov, P. Georgiev, A. Sasha Vezhnevets, M. Yeo, A. Makhzani,
H. Kiittler, J. Agapiou, J. Schrittwieser, J. Quan, S. Gaffney, S. Petersen, K. Simonyan, T. Schaul,
H. van Hasselt, D. Silver, T. Lillicrap, K. Calderone, P. Keet, A. Brunasso, D. Lawrence,
A. Ekermo, J. Repp, and R. Tsing. StarCraft II: A New Challenge for Reinforcement Learning.
ArXiv e-prints, August 2017.

https://drive.google.com/file/d/0BxXI_RttTZAhY216RTMtanBpUnc/view
https://drive.google.com/file/d/0BxXI_RttTZAhY216RTMtanBpUnc/view

	Introduction
	Related Work
	Environment & Features
	Methods
	Modeling Action Policies
	Network Architecture
	Training Algorithm

	Results & Discussion
	Error Analysis

