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Abstract	-	With	the	advent	of	object	detection	pipelines,	we	
should	be	able	to	use	their	output	to	supervise	more	
complex	ML	tasks,	like	recognizing	specific	scenes	and	
performing	complex	image	queries.	Specifically,	it	would	be	
interesting	to	see	how	we	can	use	Deep Learning (DL) and 
especially Convolution Neural Networks (CNN) to	build	
complex	scene	detection	algorithms.	Different	CNN	
architectures	and	frameworks	will	be	evaluated	and	
customized	in	the	course	of	the	project	and	the	best	choice	
will	be	used	for	the	purpose	of	application.	 
 

1 Introduction	
 
Current surveillance and control systems in retail and elsewhere, still 
require human supervision and intervention. This work will try to 
provide a detection system in videos on real time basis, appropriate 
for; surveillance and control, inventory tracking, theft deterrence, 
threat perception and detection etc. and apply Machine 
Learning/Deep Learning techniques for real world applications. This 
will try to automate many tasks, which can be error prone otherwise 
due to human errors and fatigue. This solution can potentially have 
capability to provide real time alerts, notification on smart 
phones/tablets and provide rich data for analytics purpose.  
 

2 	Relevant	Previous	Work	
 
Convolutional Neural Network on Image Classification:  
In object classification, CNNs have become extremely popular due to 
their high success rates in accurately recognizing objects. In pattern 
and image recognition applications, the best possible Correct 
Detection Rates have been achieved using CNNs.  
In 2012, Krizhevsky and et al.[1] trained a deep convolutional neural 
network to classify images in LSVRC-2010 ImageNet into 1000 
kinds of classes with much better precision than previous work, 
which marked the beginning of usage of deep learning in computer 
vision. AlexNet has 60 million parameters and 650,000 neurons, 
consists of five convolutional layers. Those layers are followed by 
max-pooling layers, and three globally-connected layers with a final 
1000-way softmax layer. After that, there are several symbolic 
milestones in the history of CNN development, which are ZFNet by 
Zeiler and Fergus, VGGNet  by Simonyan et al., GoogLeNet 
(Inception-v1)  by Szegedy et al and ResNet by He et al. GoogLeNet 
or Inception V1 was the winner of ILSVRC 2014. It largely reduced 
the ImageNet top-5 error from 16.4% which obtained by AlexNet to 
6.7% . The Inception deep convolutional architecture was introduced, 
with the advantages of less parameters (4M, compared to AlexNet 
with 60M) . Average Pooling instead of Fully Connected layers at the 
top of the ConvNet was applied to eliminate unnecessary parameters. 
Later, there are several more advanced versions to Inception V1. 
Batch normalization was introduced in Inception V2  by Loffe et al. 
Later the architecture was improved by additional factorization ideas 
in the third iteration which will be referred to as Inception V3. 
Inception V4 has a more uniform simplified architecture and more 
inception modules than Inception V3. Szegedy et al. designed 
Inception-ResNet to make full use of residual connections introduced 
by He et al. in and the latest revised version of the Inception 

architecture. Training with residual connections accelerates the 
training of Inception networks by utilizing additive merging of 
signals. 
 
Deep Learning Frameworks: 
In 2014, Jia and et al.[2] created a clean and modifiable deep learning 
framework: Caffe. Just a year ago Google Brain Team open sourced 
another deep learning framework called TensorFlow, for numerical 
computation using data flow graphs. Nodes in the graph represent 
mathematical operations, while the graph edges represent the 
multidimensional data arrays (tensors) communicated between them. 
The flexible architecture allows you to deploy computation to one or 
more CPUs or GPUs in a desktop, server, or mobile device with a 
single API. Another such framework worth mentioning is Torch 
developed by NYU and Facebook.  
 

3 Modeling	and	Algorithm	
CNN is made up of a series of convolutional and pooling layers, in 
which in the final layer is fully connected at the output neurons with 
a softmax layer to give the confidence of the prediction (Fig. 2.).  
 

  
Fig. 1. General architecture of Convolutional Neural Network  

A convolutional layer is basically a set of learnable filters (kernels) 
which represents a specific part of the image by preserving the spatial 
relationship between pixels. It is activated when it detects some 
specific type of feature at some spatial position of the input. The 
pooling layer (subsampling) reduces the dimensionality of each 
feature map but retains the most important information. This is done 
by a few common methods; max, average, sum pooling. The result is 
a smaller and more manageable feature dimension, with lesser 
number of parameters and computations. The final fully connected 
layer involves a softmax function which will help us make the 
prediction, by exponentiation and then normalizing the inputs.  

𝒔𝒐𝒇𝒕𝒎𝒂𝒙(𝒙)𝒊  =  𝒆𝒙𝒑(𝒙𝒊)
𝚺𝒋	𝒆𝒙𝒑(𝒙𝒊)

		 

The output of the softmax function is used to represent the 
categorical distribution that gives us a list of values from 0 to 1 that 
add up to 1, which represent the probabilities (confidence) of each 
class prediction.  
 

             

Fig 2. Visualization of softmax function implementation in the final layer of 
CNN models.  



3.1 Inception-ResNet-V2		
 

 
 
 
Inception-ResNet-v2 is a convolutional neural network (CNN) that 
achieves a new state of the art in terms of accuracy on the ILSVRC 
image classification benchmark as shown in the table below. 
Inception-ResNet-v2 is a variation of earlier Inception V3 model 
which borrows some ideas from Microsoft's ResNet papers. 
	

Model Version Acc@1 Acc@5 
InceptionResNetV2 TensorFlow 80.4 95.3 
InceptionV4 TensorFlow 80.2 95.3 
ResNet152 PyTorch 78.428 94.110 
InceptionV3 PyTorch 77.294 93.454 
ResNet101 PyTorch 77.152 93.548 

 
4 Datasets	

 
Since the application is geared towards monitoring surveillance video 
and detect threat perception and theft scenarios, as one of the areas of 
focus, it seemed natural to choose datasets containing images of 
handguns, knives, human hand and everyday objects observed in 
retail environment. Using these collection of images, I prepared three 
class of image datasets. a) guns b) knives c) hand and d) Everyday 
Objects observed in retail environments, and created over 1000 labels 
accordingly in the database. Images from following data sources were 
used for this purpose.  
Knives Images Database, which contains 9340 negative examples 
and 3559 positive examples, Internet Movie Firearms Database, 
which contains 8557 images, Hand Dataset which contains about 
14700 hand images from various sources. EgoHands Dataset 
containing 120000 images. ImageNet dataset. which contains 
more than 1.2 million images in over 1000 categories.  
 

5 Observations	and	Results	
 
I trained and evaluated the data set on different models to see which 
one gives the best result 

5.1 AlexNet and Caffe 
I started the process by using AlexNet in combination with Caffe. I 
provided the training model, a dataset containing three classes of 
image; handgun, knives and human hand as an input and it took about 
30 mins for the training process to complete. I divided the dataset 
into training and validation in ratio of 90% - 10% respectively. 
Following were the training parameters used at high level.  

Training Epochs Solver Type Base Learning Rate 
30 Stochastic Gradient 

Descent 
0.01 

 
As seen from the graph in Fig 3, the model managed to reach ~90% 
validation accuracy after 30 Epochs. 
 

Fig 3. Accuracy and Loss Graph of training and validation steps                                                                        
    
 
 

      
Fig 4. Learning Rate v/s Epoch for AlexNet/ Caffe 
 
The Figure 5. Below shows a sample of the test performed on some 
images to see the accuracy of the model. As seen the Model is not 
reliable in predicting images of class knife. It predicted images of gun 
class reliably for some of the test images.      
 

 
          

 
 
 

 



 
 

5.2 GoogleNet and TensorFlow 
As before I divided the dataset into training and validation in ratio of 
90% - 10% respectively. It took approx. 30 mins for it to train on the 
dataset. Following were the training parameters used. 
 

Training 
Epochs 

Solver Type Base 
Learning Rate 

Gamma Step 
Size 

80 Stochastic 
Gradient 
Descent 

0.001 0.96 10 

 
 
 
 
 
 

 
Fig. 6 Accuracy and Loss Graph of training and validation steps  

 
Fig. 7 Learning Rate v/s Epoch for GoogleNet & TensorFlow 
 
The model achieves ~85% validation accuracy afer 80 Epochs. 
 
Fig 8. Below shows result of some the Test Image used against this model. 
 

 
 

 
 
The model is not accurate in predicting the image class as seen from 
above tests.  
 
 
5.3      Inception-ResNet-V2 and TensorFlow 
 
The dataset was divided into training and validation in ratio of 90% - 
10% respectively. It took approx. 10 hrs for it to train on the dataset. 
Following were the training parameters used. 
 

Training Epochs Solver Type Base Learning Rate 
100 Stochastic Gradient 

Descent 
0.0001 

 
As can be seen from the graphs below, the model achieves 99.97% 
accuracy after 100 Epochs.  
 
 
 

 
Fig. 9 Accuracy and Loss Graph of training and validation for Inception-
ResNet-v2/TensorFlow 
 

 
Fig. 10 Learning Rate v/s Epoch for Inception-ResNet-v2 & TensorFlow 
 
Below figures show some results of Testing some images on the 
Model. 
 



 

 

 
 
As can be seen from above results, the model is fairly accurate in 
predicting the image class.  
 
It is to be noted that all the above training was carried out on a Intel 
i7 12 Core CPU based system with 64G RAM, and having NVIDIA 
M6000 GPU.  
 
        5.4      End To End Solution Running on Target Platform 
 
The figure below shows the complete end to end solution in terms of 
system setup and the application workflow. The trained network 
(Inception-ResNet-v2) was deployed on the target platform NVIDIA 
Jetson TX2, and was applied on each and every image captured by 
the onboard CCTV Camera module in real-time, to monitor Images 
Of Interest (I-O-I).  
 

        Input CCTV Images                                                                                                

                                                               
 
 
 

 
 

 
 
 

 
 
 
 
 
 
 
 
 

5.5      iOS App Receiving Notifications	
The figures below show iOS app receiving real time notifications 
from the Nvidia Jetson TX2 board, detecting images of interest (IOI).  
 

 
 
                                                

	
6 CONCLUSION	
 
Based on the observed results, Inception-ResNet-v2 used with 
TensorFlow Framework is giving the best accuracy and results out of 
the models evaluated and analyzed, and for the most part it detects 
the Images Of Interest accurately when deployed on the target 
platform.  
 
7 FUTURE	WORK	
 
Despite Inception-ResNetV2 performing the best, I found that many 
predictions had a probability of 20% to 40%, even if these predictions 
were correct. The first step I would like to take is to increase the 
confidence in these predictions so that the model would be more well 
trained. This could be done my training it on more data or increasing 
the epochs when training the CNN. Also after developing an end-to-
end Proof Of Concept solution, I strongly feel that it has the potential 
of becoming a commercially viable product 
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