
Real Time Monitoring of CCTV Camera Images
Using Object Detectors and Scene Classification for Retail and Surveillance Applications

Anand Joshi

CS229-Machine Learning, Computer Science, Stanford University, CA
aaj1031@stanford.edu

Fall 2017

Abstract	-	With	the	advent	of	object	detection	pipelines,	we	
should	be	able	to	use	their	output	to	supervise	more	
complex	ML	tasks,	like	recognizing	specific	scenes	and	
performing	complex	image	queries.	Specifically,	it	would	be	
interesting	to	see	how	we	can	use	Deep Learning (DL) and
especially Convolution Neural Networks (CNN) to	build	
complex	scene	detection	algorithms.	Different	CNN	
architectures	and	frameworks	will	be	evaluated	and	
customized	in	the	course	of	the	project	and	the	best	choice	
will	be	used	for	the	purpose	of	application.	

1 Introduction	

Current surveillance and control systems in retail and elsewhere, still
require human supervision and intervention. This work will try to
provide a detection system in videos on real time basis, appropriate
for; surveillance and control, inventory tracking, theft deterrence,
threat perception and detection etc. and apply Machine
Learning/Deep Learning techniques for real world applications. This
will try to automate many tasks, which can be error prone otherwise
due to human errors and fatigue. This solution can potentially have
capability to provide real time alerts, notification on smart
phones/tablets and provide rich data for analytics purpose.

2 	Relevant	Previous	Work	

Convolutional Neural Network on Image Classification:
In object classification, CNNs have become extremely popular due to
their high success rates in accurately recognizing objects. In pattern
and image recognition applications, the best possible Correct
Detection Rates have been achieved using CNNs.
In 2012, Krizhevsky and et al.[1] trained a deep convolutional neural
network to classify images in LSVRC-2010 ImageNet into 1000
kinds of classes with much better precision than previous work,
which marked the beginning of usage of deep learning in computer
vision. AlexNet has 60 million parameters and 650,000 neurons,
consists of five convolutional layers. Those layers are followed by
max-pooling layers, and three globally-connected layers with a final
1000-way softmax layer. After that, there are several symbolic
milestones in the history of CNN development, which are ZFNet by
Zeiler and Fergus, VGGNet by Simonyan et al., GoogLeNet
(Inception-v1) by Szegedy et al and ResNet by He et al. GoogLeNet
or Inception V1 was the winner of ILSVRC 2014. It largely reduced
the ImageNet top-5 error from 16.4% which obtained by AlexNet to
6.7% . The Inception deep convolutional architecture was introduced,
with the advantages of less parameters (4M, compared to AlexNet
with 60M) . Average Pooling instead of Fully Connected layers at the
top of the ConvNet was applied to eliminate unnecessary parameters.
Later, there are several more advanced versions to Inception V1.
Batch normalization was introduced in Inception V2 by Loffe et al.
Later the architecture was improved by additional factorization ideas
in the third iteration which will be referred to as Inception V3.
Inception V4 has a more uniform simplified architecture and more
inception modules than Inception V3. Szegedy et al. designed
Inception-ResNet to make full use of residual connections introduced
by He et al. in and the latest revised version of the Inception

architecture. Training with residual connections accelerates the
training of Inception networks by utilizing additive merging of
signals.

Deep Learning Frameworks:
In 2014, Jia and et al.[2] created a clean and modifiable deep learning
framework: Caffe. Just a year ago Google Brain Team open sourced
another deep learning framework called TensorFlow, for numerical
computation using data flow graphs. Nodes in the graph represent
mathematical operations, while the graph edges represent the
multidimensional data arrays (tensors) communicated between them.
The flexible architecture allows you to deploy computation to one or
more CPUs or GPUs in a desktop, server, or mobile device with a
single API. Another such framework worth mentioning is Torch
developed by NYU and Facebook.

3 Modeling	and	Algorithm	
CNN is made up of a series of convolutional and pooling layers, in
which in the final layer is fully connected at the output neurons with
a softmax layer to give the confidence of the prediction (Fig. 2.).

Fig. 1. General architecture of Convolutional Neural Network

A convolutional layer is basically a set of learnable filters (kernels)
which represents a specific part of the image by preserving the spatial
relationship between pixels. It is activated when it detects some
specific type of feature at some spatial position of the input. The
pooling layer (subsampling) reduces the dimensionality of each
feature map but retains the most important information. This is done
by a few common methods; max, average, sum pooling. The result is
a smaller and more manageable feature dimension, with lesser
number of parameters and computations. The final fully connected
layer involves a softmax function which will help us make the
prediction, by exponentiation and then normalizing the inputs.

𝒔𝒐𝒇𝒕𝒎𝒂𝒙(𝒙)𝒊 = 𝒆𝒙𝒑(𝒙𝒊)
𝚺𝒋	𝒆𝒙𝒑(𝒙𝒊)

		

The output of the softmax function is used to represent the
categorical distribution that gives us a list of values from 0 to 1 that
add up to 1, which represent the probabilities (confidence) of each
class prediction.

Fig 2. Visualization of softmax function implementation in the final layer of
CNN models.

3.1 Inception-ResNet-V2		

Inception-ResNet-v2 is a convolutional neural network (CNN) that
achieves a new state of the art in terms of accuracy on the ILSVRC
image classification benchmark as shown in the table below.
Inception-ResNet-v2 is a variation of earlier Inception V3 model
which borrows some ideas from Microsoft's ResNet papers.
	

Model Version Acc@1 Acc@5
InceptionResNetV2 TensorFlow 80.4 95.3
InceptionV4 TensorFlow 80.2 95.3
ResNet152 PyTorch 78.428 94.110
InceptionV3 PyTorch 77.294 93.454
ResNet101 PyTorch 77.152 93.548

4 Datasets	

Since the application is geared towards monitoring surveillance video
and detect threat perception and theft scenarios, as one of the areas of
focus, it seemed natural to choose datasets containing images of
handguns, knives, human hand and everyday objects observed in
retail environment. Using these collection of images, I prepared three
class of image datasets. a) guns b) knives c) hand and d) Everyday
Objects observed in retail environments, and created over 1000 labels
accordingly in the database. Images from following data sources were
used for this purpose.
Knives Images Database, which contains 9340 negative examples
and 3559 positive examples, Internet Movie Firearms Database,
which contains 8557 images, Hand Dataset which contains about
14700 hand images from various sources. EgoHands Dataset
containing 120000 images. ImageNet dataset. which contains
more than 1.2 million images in over 1000 categories.

5 Observations	and	Results	

I trained and evaluated the data set on different models to see which
one gives the best result

5.1 AlexNet and Caffe
I started the process by using AlexNet in combination with Caffe. I
provided the training model, a dataset containing three classes of
image; handgun, knives and human hand as an input and it took about
30 mins for the training process to complete. I divided the dataset
into training and validation in ratio of 90% - 10% respectively.
Following were the training parameters used at high level.

Training Epochs Solver Type Base Learning Rate
30 Stochastic Gradient

Descent
0.01

As seen from the graph in Fig 3, the model managed to reach ~90%
validation accuracy after 30 Epochs.

Fig 3. Accuracy and Loss Graph of training and validation steps

Fig 4. Learning Rate v/s Epoch for AlexNet/ Caffe

The Figure 5. Below shows a sample of the test performed on some
images to see the accuracy of the model. As seen the Model is not
reliable in predicting images of class knife. It predicted images of gun
class reliably for some of the test images.

5.2 GoogleNet and TensorFlow
As before I divided the dataset into training and validation in ratio of
90% - 10% respectively. It took approx. 30 mins for it to train on the
dataset. Following were the training parameters used.

Training
Epochs

Solver Type Base
Learning Rate

Gamma Step
Size

80 Stochastic
Gradient
Descent

0.001 0.96 10

Fig. 6 Accuracy and Loss Graph of training and validation steps

Fig. 7 Learning Rate v/s Epoch for GoogleNet & TensorFlow

The model achieves ~85% validation accuracy afer 80 Epochs.

Fig 8. Below shows result of some the Test Image used against this model.

The model is not accurate in predicting the image class as seen from
above tests.

5.3 Inception-ResNet-V2 and TensorFlow

The dataset was divided into training and validation in ratio of 90% -
10% respectively. It took approx. 10 hrs for it to train on the dataset.
Following were the training parameters used.

Training Epochs Solver Type Base Learning Rate
100 Stochastic Gradient

Descent
0.0001

As can be seen from the graphs below, the model achieves 99.97%
accuracy after 100 Epochs.

Fig. 9 Accuracy and Loss Graph of training and validation for Inception-
ResNet-v2/TensorFlow

Fig. 10 Learning Rate v/s Epoch for Inception-ResNet-v2 & TensorFlow

Below figures show some results of Testing some images on the
Model.

As can be seen from above results, the model is fairly accurate in
predicting the image class.

It is to be noted that all the above training was carried out on a Intel
i7 12 Core CPU based system with 64G RAM, and having NVIDIA
M6000 GPU.

 5.4 End To End Solution Running on Target Platform

The figure below shows the complete end to end solution in terms of
system setup and the application workflow. The trained network
(Inception-ResNet-v2) was deployed on the target platform NVIDIA
Jetson TX2, and was applied on each and every image captured by
the onboard CCTV Camera module in real-time, to monitor Images
Of Interest (I-O-I).

 Input CCTV Images

5.5 iOS App Receiving Notifications	
The figures below show iOS app receiving real time notifications
from the Nvidia Jetson TX2 board, detecting images of interest (IOI).

	
6 CONCLUSION	

Based on the observed results, Inception-ResNet-v2 used with
TensorFlow Framework is giving the best accuracy and results out of
the models evaluated and analyzed, and for the most part it detects
the Images Of Interest accurately when deployed on the target
platform.

7 FUTURE	WORK	

Despite Inception-ResNetV2 performing the best, I found that many
predictions had a probability of 20% to 40%, even if these predictions
were correct. The first step I would like to take is to increase the
confidence in these predictions so that the model would be more well
trained. This could be done my training it on more data or increasing
the epochs when training the CNN. Also after developing an end-to-
end Proof Of Concept solution, I strongly feel that it has the potential
of becoming a commercially viable product

8 REFERENCES	

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks,” in Advances
in neural information processing systems, pp. 1097–1105, 2012.  	

[2] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R.
Girshick, S. Guadarrama, and T. Darrell, “Caffe: Convolutional
architecture for fast feature embedding,” arXiv preprint
arXiv:1408.5093, 2014.  

[3] Convolutional Neural Networks (CNNs / ConvNets),
http://cs231n.github.io/convolutional-networks/

[4] Scalable Object Detection using Deep Neural Networks
Dumitru Erhan, Christian Szegedy, Alexander Toshev, and Dragomir
Anguelov Google, Inc. 	
	

[5]	Automatic Handgun Detection Alarm in Videos Using Deep
Learning
Roberto Olmos, Siham Tabik, and Francisco Herrera
Soft Computing and Intelligent Information Systems research
group Department of Computer Science and Artificial Intelligence,

Detection
using CNN

Match Found ?
Send Push

Notification
Req using
NODE.js

Apple Push
Notification

Service

[6] CCTV object detection with fuzzy classification and image
enhancement, Andrzej MATIOLAŃSKI, Aleksandra
MAKSIMOWA, Andrzej DZIECH, Multimedia Tools and
Applications, 2015

[7] Automated Detection of Firearms and Knives in a CCTV Image,
Michał Grega, Andrzej MATIOLAŃSKI, Piotr Guzik, Mikołaj
Leszczuk, Sensors, ISSN 1424-8220

[8] TensorFlow, An open-source software library for Machine
Intelligence. https://www.tensorflow.org/

[9] Rethinking the Inception Architecture for Computer Vision
Christian Szegedy Google Inc. szegedy@google.com
Vincent Vanhoucke vanhoucke@google.com,
Sergey Ioffe sioffe@google.com
Zbigniew Wojna University College London
zbigniewwojna@gmail.com

