Computer Vision for Card Games

Matias Castillo
Department of Electrical Engineering
Stanford University
Stanford, California 94305
matiasct@stanford.edu

Abstract—For this project, we designed a computer vision
program that can recognize and accurately classify photos of
playing cards lying on a table into one of 52 classes. In conjunc-
tion with our CS221 project, where we designed a card playing
Al this allows us to develop a holistic application for a player
with a real-world card deck to play against a computer or for a
player to use Al support (e.g. via Google glasses), playing a real
world game against an adversary. We decided to test a variety of
machine learning methods to tackle this computer vision problem.
Using classical methods such as multiclass logistic regression
and multiclass support vector machines with regularization, we
managed to achieve accuracies between 82-89% on the dev and
test sets. Using deep learning approaches, we designed a custom
convolutional neural network in Tensorflow, that manages to get
100 % on the dev and test sets.

Keywords—Computer Vision, Object Classification, Convolu-
tional Neural Networks

I. INTRODUCTION

Most programs that use artificial intelligence for card
games are focused on intelligent agents and smart decision
making in a virtual environment. Not many study the in-
teraction of the agents with the real world. In this project
we used different machine learning models for recognizing
individual playing card images taken by a smartphone. This
could be useful, for example, for automatically analyzing a
high stakes card game on TV, based on the visual input.
Another application would be to combine this program with
Google glasses to find the best move in a real-world situation,
such as a game of poker or blackjack to turn the odds in your
favor.

II. DATA AUGMENTATION AND ENGINEERING

Most of the data sets available on the internet only contain
perfectly aligned images of playing cards. For our application,
we were interested in being able to recognize real images
taken with a smartphone’s camera, to simulate a real-world
application. For this purpose we decided to develop our own
data set.

We purchased a deck of cards and took our own pictures.
For the data set generation, we first took 10 images of each
card class considering different positions and distances, for a
total of 520 images. Then, we developed an image augmen-
tation algorithm that transformed the 10 images of each card
to a set of 1.050 images of the same card, by using different
combinations of rotation, zoom, brightness, contrast, sharpness
and color manipulations. We ended up with a 1.6 GB data set

Benjamin Goeing
Department of Electrical Engineering
Stanford University
Stanford, California 94305
bgoeing @stanford.edu

Jesper Westell
Department of Electrical Engineering
Stanford University
Stanford, California 94305
jesperw @stanford.edu

of 54,600 card images. A small sample of the data set can be
seen in figure 1.

Fig. 1: Example of the data set

Each of the images was originally represented as a tridi-
mensional (480, 640, 3) array of RGB pixels. We decided to
re-scale it to (160, 120, 3) for better fit in memory during train
time and to also normalize by dividing by 255. Additionally,
we defined a Y-vector with the correct labels corresponding to
one of the 52 possible classes (4 ranks and 13 suits).

We decided to divide our data set into 90 % train (49,140
images), 5% dev, and 5% test. For this purpose, we generated
random indices and wrote a custom script to read from the
correct images and labels. It turned out that loading all training
examples into memory at the same time was not possible,
so we developed another script, loading only one randomized
minibatch at a time into memory. This solved our memory
problem, but significantly increased the time it would take
to train models, due to the large number of memory access
operations.

III. RELATED WORK

While there is a large variety of computer vision algorithms
and applications, we have found nothing that deals with
recognizing playing card images in particular. During the 2016
instance of CS 229, a project group developed a convolutional
neural network to recognize and classify food images, which is
similar to our project in nature [1]]. However, different kinds of
foods usually share very different features (e.g. colors, shapes
etc.), whereas playing cards look more similar to each other.
On the other hand, objects that belong to the same food class
could vary in shape and size, whereas playing cards always
have a rectangular element, and similar proportions, although
they may be rotated. Both problems therefore present different
challenges for a CV algorithm.

IV. CLASSICAL MACHINE LEARNING MODELS

As a first step, we decided to test a variety of classical
machine learning methods, to gauge the complexity of the
problem. We also wanted to establish a baseline of traditional
methods to compare against deep learning methods, which we
implemented as a second part of the project. We used scikit-
learn to implement these methods.

A. Models
Multiclass Logistic Regression (MLR)

As a first method, we decided to use a version of logistic
regression, that combines multiple binary classifiers in a “one
versus all” (OVA) scheme. This means that the model has 52
binary classifiers that learn by minimizing the logistic loss.
Then, when testing a specific example, the model chooses the
best confidence score among all the classifiers.

The learning was done using stochastic gradient descent,
and the loss function J can be expressed as:

J(w) = [y log(h(¢(x?)) + (1 = y') log(1 — h(¢(«"))]

where A is the sigmoid function, ¢(2(*)) and y(*) are the feature
vector and the correct classification for the example ¢, and w
is the learned parameter.

Multiclass Support Vector Machine (MSVM)

This model was also implemented using multiple binary
classifiers with OVA scheme and stochastic gradient descent,
but now optimizing a hinge loss function in each of them.
Therefore, the loss function J in each of the classifiers is:

J(w,b) = max(0,1 — y@ (wp(z?) 4 b))

where w, b are the parameters of the hyperplane, and H(z®)
and y(?) are the feature vector and the correct classification for
the example 3.

B. First results and adding regularization

After some first experimentation, we realized that both
of these models show signs of overfitting, as they achieved
close to 100% train accuracy, but only 81.9% and 85.2%
dev accuracy respectively (see Fig. 3 in the results section).
To reduce overfitting, we decided to add regularization. We
decided to use squared norm regularization (L2). For each
of the classifiers, the regularized loss function J, can be
expressed as:

Jy = J 4+ Alfwll

In order to find the best values for A, the models were
trained using a broad range of \. Figure 2 illustrates the
achieved accuracy values on the dev set of each model after
30 iterations. The best A obtained were 0.1 and 0.02 for the
MLR and MSVM models respectively.

Finally, the performance of both regularized and non-
regularized models was compared after training them for 30
iterations (see Fig. 3).

Dev set accuracy using different regularization
lambdas

0.9

0.85 \O/O\

0.8

0.75

Dev set accuracy

0.7

0.65
0.001 0.01 0.02 0.05 0.1 0.5 1

Lambda

MSVM —MLR

Fig. 2: Performance of MLR and MSVM models using differ-
ent regularization parameter \

C. Results

Performance of MLR and MSVM models

>
Q
<
—~
=
Q
Q
<
0
5 10 15 20 25 30
Number of iterations
= MLR Train MLR Dey === == MLR + Reg Train MLR + Reg Dev
= MSVM Train MSVM Dev == == MSVM + Reg Train MSVM+ Reg

Fig. 3: Performance of classic machine learning models

The initial MLR model reached an accuracy of 98.7% on
the train set and 85.2% on the dev set. The performance of
the original MSVM model is slightly worse with 98.2% and
81.9% accuracy for the train and dev sets respectively. After
applying L2 regularization, the models improved their accuracy
by 3 to 5 percentage points, with a dev accuracy of 88.7% for
the MLR model and 84.4% with MSVM.

V. CONVOLUTIONAL NEURAL NETWORK
A. Motivation

Since we still didn’t get close to achieving the desired
100% accuracy, we decided to go a step further, and attempt
to design a convolutional neural network. Although we didn’t
have previous experience with the technique, aside from one
team member concurrently taking CS 230, we thought that this
would be the most promising approach.

B. Defining the architecture

While there are a number of pre-trained networks out there
that we could have copied and pasted, we decided that we
wanted to get the full experience out of this exercise. We
therefore decided to design and train a network from scratch
using TensorFlow. We decided on an architecture using two
convolutional layers and one fully connected layer using the
cross-entropy loss, as this architecture had worked well in a
homework problem of CS 230 [2]]. The cross entropy loss can
be expressed as:

m
J == yilogy,
=1

Figure 4 visualizes the high-level architecture of our net-
work.

2x Conv Layer

(49k, 160, 120, 3) Output

Soft
Conv Relu Pool FC max
— — — — .

Fig. 4: Architecture of the Convolutional Neural Network

C. Defining and tuning hyper parameters

We experimented with a number of different values for the
filters, poolings, and strides. For this purpose, we decided to
run our model with only 5000 training examples, 1000 dev
and test images for 5-10 epochs to compare performance of
different hyperparameters (Running the full model would have
taken to long for us to iterate quickly enough).

We found that changes of the hyperparameters for the
convolutional layer didn’t make too much of a difference. We
maintained that the first convolutional layer should work with
larger filters, to detect the edges of the cards, whereas the
second convolutional layer should work with smaller values,
to detect more details in the image.

We ultimately decided on the following details:

(a) Original image

(b) Saliency map Conv Layer 1

|

(c) Saliency map Conv Layer 2

Input: (160,120,3) Conv 1 Pool 1 Conv 2 Pool 2 1 Output

FC
Filter: Relu + Filter: Relu + Fully I 52- I

Ax4x3x8 MaxPool 2x2x8x16 MaxPool connec- class
f=6 f=4 ted Softmax
s=6 s=4

Fig. 5: Model details of the Convolutional Neural Network

The following figure visualizes the outputs of our 2 con-
volutional layers:

Fig. 6: Propagation of a 6 of Hearts through the Convolutional
Layers with 8 and 16 filters respectively

The hyperparameter that turned out to make a huge dif-
ference was the learning rate. Initially starting with a learning
rate of 0.001 led to very poor results. We experimented with
a variety of different learning rates, and ultimately decided to
chose 0.01, as it yielded the fastest increase in accuracy with
our ’simplified” model with 5000 training examples. However,
as this still took over 30 minutes to run, we did not sample a
very large amount of learning rates, as this again would have
taken a considerable amount of time. Instead, we decided to go
with a learning rate of 0.01, as it initially seemed to be doing
well, and decided to go back and refine it further in case the
model would not perform as expected later on.

D. Results

With the architecture and hyper parameters from above, and
a learning rate of 0.01 we ran the model over night for a total
of 30 epochs, which took approximately 14 hours on our CPU,
training on all 49,140 images. We ended up achieving 100.0%
accuracy on the dev set after 17 epochs, and also 100.0% on
the test set. While the algorithm converged to 99.6% on the
dev set after only 7 epochs, it took another 10 epochs to get
the remaining 0.4% right. Figure 7 shows our results:

Performance of the Convolutional Neural Network

Accuracy

5 10 15 20 25 30

Number of epochs

= CNN Training set = CNN Dev set

Fig. 7: Results of our convolutional neural network

VI. DISCUSSION OF RESULTS, CONCLUSION AND FUTURE
WORK

We believe that the CNN worked better than the traditional
methods because of the variety of zoom, rotation, angles etc.
in the images, that the MSVM and MLR were not able to
capture. We believe we could give the traditional methods
another performance boost through additional pre-processing
such e.g. axis aligning the images before handing them to
the models. However, we believe that the CNN would also
naturally perform better on this task, so our future efforts
would likely focus on the CNN in practice.

We are very glad about our result of 100.0% with the
CNN. However, we suspect that this could be because despite
all of our augmentation attempts, the images still share a lot
of similarities (e.g. all have a brown table as a background).
To further validate our model, we scraped 10 card images
of the internet and tested our model on these images from
different distributions. We achieved an accuracy of 50% on
these images, which shows that our model is still able to
recognize these cards to some extent (given a ~2% accuracy
from random guessing), but is not performing as well on dif-
ferent distributions. Some sample images that were classified
correctly and incorrectly can be viewed in figure 7. Note that
many misclassified images were classified as having the suit
of hearts. This could mean that the trained classifier has a bias
towards this particular suit. The color red does stand out more
than the color black, especially in the training examples with
reduced brightness, and the shape of a heart is similar to an
upside-down spade, so this could certainly be the case.

For future work we plan to train the model on different
distribution of sets (e.g. cards on different background, themed
decks of cards etc.). However, as our initial research has
shown, it is not trivial to find a large enough training data
set that simulates a real-world situation online. We would
therefore most likely need to create other data set from scratch
by taking pictures, which is a very time consuming exercise. If
we had more computational power, we would also try a larger
variety of hyper parameters, e.g. to sample a wider variety of
learning rates and try to add regularization, as we did with the
classical machine learning models, in order to avoid a potential
bias in favor of the Hearts suit.

o

A i : |
& v

|« & *

& [

S *

(a) Correctly classified (b) Correctly classified (c) Correctly classified
h b

(d) Classified as King of(e) Classified as 2 of(f) Classified as 5 of
Hearts Hearts Hearts

Fig. 8: Sample of images scraped from internet, both correctly
and incorrectly classified

ACKNOWLEDGMENT

This research was conducted as the final project for the
course CS229 (Machine Learning), at Stanford University. The
authors would like to thank Dan Boneh and Andrew Ng,
and the rest of the teaching staff. Special thanks are given
to the authors project mentor, Sanyam Mehra, for his advice
throughout the project.

CONTRIBUTIONS

Matias Castillo: worked on the data collection and augmenta-
tion, the development of classical machine learning models,
and the report.

Benjamin Goeing: worked on the data collection and aug-
mentation, data formatting, the development of the convo-
lutional neural network, and the report.

Jesper Westell: worked on the development of classical ma-
chine learning models, in feature extraction and vector
manipulation, in testing the convolutional neural network,
and the report.

REFERENCES

[11 Yu, Q., Mao, D., Wang, J. Deep Learning Based Food Recognition. 2016.
Stanford CS229 Project Report.

[2] DeepLearning.ai / CS230 course materials

[3] https://github.com/grishasergei/conviz

[4] Convolutional Neural Networks (CNNs /
http://cs231n.github.io/convolutional-networks/

[5S] Zeiler, M. D., Fergus, R. (2014, September). Visualizing and under-
standing convolutional networks. In European Conference on Computer
Vision (pp. 818-833). Springer International Publishing.

ConvNets),

[6] Krizhevsky, A., Sutskever, 1., Hinton, G.E.: Imagenet classification with
deep convolutional neural networks. In: NIPS (2012)

[7] TensorFlow. jhttps://www.tensorflow.org/
[8] Scikit-learn. http://scikit-learn.org/stable/
[9] NumPy. http://www.numpy.org/|

https://www.tensorflow.org/
http://scikit-learn.org/stable/
http://www.numpy.org/

	Introduction
	Data Augmentation and Engineering
	Related work
	Classical Machine Learning Models
	Models
	First results and adding regularization
	Results

	Convolutional Neural Network
	Motivation
	Defining the architecture
	Defining and tuning hyper parameters
	Results

	Discussion of results, conclusion and future work
	References

