Predict Effect of Trump’s Tweets on Stock Price Milestone

Tong Yang (tongy), Yuxin Yang (yuxiny)
December 16, 2017

1 Problem Description & Motivation

Many factors can influence market movement nowadays. With the power of social media, the market re-
acts to news events almost instantly. Reacting too slowly for a certain event might lead to loss of profiting
opportunities or even negative PNL (Profit And Loss). In order to maintain profitability, one cannot merely
rely on human labor in understanding the impact of the event. Natural Language Processing gives us com-
petitive edge in understanding impacts of news events.

In this project, we would like to understand the impact and implication of a very specific news event re-
lease - President Trump’s Tweets. Since one of our team member worked in algorithmic trading industry
before, she is aware that there are many companies are actively using Twitter messages to trade. And those
companies trade in large quantities that might actually lead to market index changes. In this project, we
are going to assume that there are people actively trade with Trump’s Twitter, and we want to predict how
people react to Trump’s Twitter releases. We want to understand how Trumps’s Tweets can impact trader’s
behaviors and also the market.

The input to our models is vectors of words, with each vector representing one tweet’s content. We then
tried three different models: Naive Bayes, SVM and LSTM to predict market movement(rise/remain the
same/drop) over certain time window after President Trump releases new Twitter messages. In addition, we
also tested on different time-frames (ranging from 1 minute to 21 minutes) to experiment on the circulation
time of the tweets.

2 Dataset
2.1 Raw Data

Our dataset includes three parts. The first part of our dataset is the training samples, which is the Trump’s
Tweets Archive. We found all of Trump’s Tweets from May 4th, 2009 to Oct 20th, 2017 on www.
trumptwitterarchive.com. [1] We exported their archive, and got a 5.9 MB csv file with 11, 330
tweets. The second part of our dataset is the outputs (labels). We are going to use ~ 1GB of S&P 500
Index and underlying stocks minute resolution trading prices as an indication of market movements. We ac-
quired this data source from Wharton Research Data Services (WRDS) [2], which is a matrix of dimension
146640 x 486, where 146, 640 refers to the time ticks from the beginning of 2016 up to today.The third part
of our data is the pretrained GloVe[3] for word embedding, which will be used in the LSTM model. Using
the embedding, each word can be representated as a vector in R™, where n € {50, 100, 200, 300}.

2.2 Data Processing

Data processing is divided into three steps. The first step is to put training data together with the correct
labels. In our case, the training data is Trump’s Tweets, and the labels are the price changes. We firstly used
Pandas Data Frame grouping methods to map the millisecond S&P 500 Index prices to minute resolution.
Next, we calculated the percentage of change for each minute time stamp in the next minute. For example
at 11:00 am, the price is 1,000, and at 11:01 am, the price is 1,010. The percentage of change is just
+1% for 11:00 am. Then, we labeled each tweet with the price change after ¢ minutes, where ¢t = [1, 21].
After dropping tweets released during market closed, we got 11330 data samples that are overlapping with
Trump’s Tweets.

The second step is to prepare input data for Naive Bayes and SVM, which involves removing stop words,
punctuations, and unnecessary numbers. For the purpose of this experiment, we decided to use Natural

www.trumptwitterarchive.com
www.trumptwitterarchive.com

Language Tool Kit (NLTK) from SKLearn library to help with the process. We removed stop words, did
some text cleaning and vectorized the final text. Some sample entries look like below (csv format):

2017-10-20 11:31:00,"["report’, ’'united’, ’'kingdom’, ’‘crime’, ’'rise’,
713", ’'annually’, ’"amid’, ’spread’, ’'radical’, ’islamic’, 'terror’,
"good’, ’'must’, ’'keep’, 'america’, ’'safe’]",0.13643

2017-10-20 19:50:00,"["today’, ’honor’, ’unsecretary’, ’general’,
"antonioguterres’, ’'whitehouse’, ’'speak’, ’'u’, ’'appreciate’]",-0.03889

Fig.1(a) shows the frequency of the words appeared in all the tweets. From the distribution it can be
observed that many words appeared rarely, and some of them appeared very frequently. To be specific,
there are in total 14,927 distinct words, among which 9,242 (62%) words appeared only once, 1,739
(11.6%) words appeared twice, and 3 words appeared more than 1,000 times. During modeling, we will
focus more on the medium frequency words since they are likely to carry more classification information.
Fig.1(b) shows the number of words after stop words removed for our baseline model. After finding out that
most of the Tweets are less than 20 words. We used 20 dimensional data entries, and filled the unknown
words as 399999, which is the last word in GloVe word embedding matrix representing not found words.

1003 o 8000

7000
102 . 6000
5000

4000

number of words
g
requency

E
=1
=
5

2000

1000

10° 10t 102 10% 0 10 20 30 40 50 =]
word frequency Tweet Length Histogram

(a) Frequency of words in log-log scale (b) Word2Vec Embedding

Figure 1: Data Statistics

Figure 2: Word2Vec Embedding

The third part is to prepare input for LSTM. From Fig.1(c) it can be seen that the average length of each
tweet is around 20, and more than 95% of the selected tweets are within length 30. We fixed the length

for LSTM input length to be 30 and represent each word with the pre-trained embedding vector of GloVe.
Glove is a standard Word2Vec model, which uses the co-occurrence information of the words to map one-
hot vector representation of words to lower dimension. Embedding dimensions of 50, 100, 200, 300 are
tried out during the experiment. Fig.2 shows the graph representation of embedding of words onto R300
after processed by PCA. Intuitively, words that have vectors close to each other are similar. As can be seen
from the graph, years (2013 — 2016) are close; "Cliton", "Obama", "Hillary", and "President" are close;
"Dollar" and "Price" are close; "USA", "American" and "America" are close, etc.

3 Methods

The two baseline methods we used for predicting market price changing trend are SVM (support vector
machine) and Naive Bayes. Both of them make predictions based on fixed time interval At. We form the
tweets as input and the change in market as output y with rising in stock labeled 1, no price changing
labeled 0 and dropping labeled —1. These are all vectorized to a one-hot scale during label pre-processing,
i.e.Y € R9660x3,

We firstly chose Stochastic Gradient Descent classifier based on the assumption that each word carries
a specific weight for the price to fluctuate up or down. And we also assume a linear relationship between
the presence of each word and the price fluctuation probability. We used sk-learn SGD Classification model
following stochastic gradient descent rule with hinge loss, which forms a linear SVM model for each of the
three labels. [4]

Wy = Wy—1 — S (M1 + ¢ (w] X7, Y1) Xy), (1)

where 7 is the learning rate, w is the weight, X is the training matrix, and Y is the label matrix. ¢ is our
loss function. Some preliminary results of this method are presented in the experiment section.

We also implemented Naive Bayes Gaussian for multinomial model, where we try to maximize the joint
likelihood of the data [T}, p(z(?,y). Here y' takes value from {—1,0,1} and () € R", where n is
the size of vocabulary. Because of the word frequency distribution mentioned in the previous section, here
we only select the medium frequency words, therefore 7 is a tuning parameter in our case and the value of
which is smaller than 14927, which is the total number of distinct words in all tweets.

The third approach we implemented is LSTM Networks (Long Short Term Memory Network), one type
of RNN (Recurrent Neural Network). Firstly we obtained vector representation of single tweet using GloVe
(Global Vectors of Word Representation)[8]. The process transforms each word into a vector of R", where
n € {50,100, 200, 300}, which will be served as input x; to RNN. The output y, is a two dimensional Soft-
max function to predict the average S&P 500 yield in the next minute and the value of the output reflects
the certainty of the output we have [9]. Since LSTM can better handle semantic analysis by considering the
relation of words in the sentences, it is believed that LSTM would give better prediction of the stock price.

4 Results and Discussion

4.1 SVM model and Naive Bayes

The dataset was divided into training data, validation data, and test data. We used the last 2000 data points
as the test data, and the rest was divided into 80% training data and 20% validation data. We implemented
cross validation technique to randomize our training samples and reduce over-fitting. The accuracy of our

project is defined by:
number of correctly predicted labels

2
Among all the time stamps after the tweets release, we found 5 minute labels to be most accurately pre-
dicted, and the performance tends to be stable with different cross validation development sets. In the Naive
Bayes method, the accuracy is stably at the level of 42.5% on test sets. For SVM, we ran 1, 000 epochs for
each cross validation set, and we ran 10 iterations of 1, 000 epochs. With this baseline model, we achieved
46.5% accuracy on test set prediction. As we later observed that the amount of positive and negative labels
both takes up around 40% of the dataset, and the rest 20% are zero (no-change) labels, both model beat our
40% baseline, if we predict all labels to be positive or negative.

accuracy =
Y total amount of labels

To help us better understand what our model has learned, we printed out the most informative words for
determining the drop and rise of the market[10]. And the top 40 words for up and down labels are both

15.3715 division -14.8110 imagination 14.3487 joenbc -13.1766 division

14.0969 worst -14.2299 james 12.8589 laura -12.7904 accept
13.9708 stupidly -13.6232 reporter 12.3803 leibowitz -12.7456 arseniohall
13.6392 candidacy -13.4340 puttster71l 12.2734 accrue -12.7360 teacher
12.8453 jobless -12.7844 diligence 12.2476 lesleyclark -11.9163 rolling
12.5191 unaffordable -12.5848 leibowitz 12.0598 politicalwire -11.6819 disgusting
12.1724 96 -11.8904 rest 11.5967 impact -10.9578 96
11.8494 lawrence —-11.8467 nhgop 11.5886 skylerdeckard -10.7496 thehill
11.8477 joelivan2 -11.6939 laura 11.4413 treated -10.6875 idle
11.7986 spectacle -11.5271 understand 11.4013 wasted -10.5661 drink
11.4673 disgusting -11.3132 induct 11.3998 divide —10.4486 38000
11.4451 storm -11.2103 refer 11.2942 speculation -10.2812 advice
11.4271 misstetu -10.8856 newspaper 11.2124 james -10.1755 unique
11.4171 teacher -10.5132 turnout 11.1753 publicity -10.1024 oct
11.3710 bet22325450ste -10.5052 skylerdeckard 11.0744 graphic -10.0409 church
11.1441 thehill —10.4223 williebosshog 10.9842 ursulacurtin -10.0392 assault
11.0000 brainpower -10.4075 <codyalliecats 10.8414 watched -10.0255 ryalsflair
10.9364 rave -10.2830 core 10.8059 filing -10.0247 20k
10.8221 dude -10.2624 brother 10.5621 slow —-9.9343 santa
10.7374 2nd -10.2522 ursulacurtin 10.5153 billingsley29 -9.9255 pleasurable
(a) Most Indictaive Words For Negative Market Returns (b) Most Indictaive Words For Positive Market Returns

listed in the figure below. For negative change of the market, the word "division", "worst", "stupidly"”, "can-
didacy", "jobless" are the top five words that led to market drop, while words like "ursulacurtin”, "brother",

"core" are the ones that likely to have the opposite impact of market price drop.

Interestingly, for positive market change most influential words, we see a great symmetry between positive
market change and negative market change. Words like "division" is likely to cause the exactly opposite
of market rise. It’s also very interesting to observe words like "JoeNBC", which is another Twitter account
featuring Joe Scarborough, can positively impact the market whenever he tweets something that gets re-
Tweeted by Trump. We can also see, that Trump’s re-Tweets leads to most of the market rise, but Trump’s
own Tweets are more likely to cause negative impact. Noticeably, word "James" refers to the Iraq journalist
and national hero James Wright Foley, who was brutally beheaded by ISIL. Intuitively, the mention of his
name by Trump increased national unity and market’s confidence. Besides that, we also noticed something
very counter intuitive. In our database, the word "great" came up 1,431 times, which is significantly higher
than the occurrence of other words. About every 1/9 times, Trump tweets "great” in his Twitter. And the
fact that "great" as a word has almost zero impact on market change gives us some insights of how this
word is probably used too much by our president, and carries less gravity than words indicating negative
meanings like "worst" (which is the second most important indicator of market drop).

4.2 Recurrent Neural Network(LSTM)

For the rest of our project, our main focus shifted to building a RNN model for prediction. Since our orig-
inal price changes have accurate fluctuate values besides the binary rise and drop, we tried both softmax
cross entropy loss and L2 loss during training. The intuition behind is that a rise of 3.5 is more significant
than a rise of 0.01. Through experiment we found that softmax outperforms L2 loss, so we omit to present
the second model in this paper, but we would advice anyone who plan to directly predict market return
to modify the loss function to penalize more heavily on wrongly predicted labels, instead of simply the
differences between labels and predictions.

The hyper-parameters of the model include Word2Vec embedding dimension size ({50, 100, 200, 300}),
length of LSTM units (fixed tweet length window)({20, 30}), and number of LSTM states({5, 32, 64}). In
order to better interpret our result, and to decide which time window to use in order to make the best predic-
tions, we produced the following graphs. Fig.3 shows the plot of loss and accuracy of model with different
parameters after different epochs. By analyzing the result, we found the following facts:

(a) Higher embedding dimension gives better prediction: R5Y performs much worse than R2°°, while
R290 and R3%° gives similar performance;

(b) Longer tweet length window results in higher prediction accuracy: setting the truncate length of tweet
to 30 rather than 20 results in higher accuracy because it includes more text information in the training
example;

(c) Smaller LSTM state gives better performance: setting the state number to 5 gives the lowest loss.
When the state number is set to 64, we found significant overfitting of the data with training accuracy
reaching 95% and dev accuracy 39%.

(c) Model Loss with different parameters vs. number of iter- (d) Model Accuracy with different parameters vs. number of
ations iterations

Figure 3: LSTM Model Loss and Accuracy for tuning hyper-parameters. The graph on the left plots the
loss of train_set (solid line) and test_set (dotted line) over number of epochs our model had run. In legend,
numbers (50, 100, 200 or 300) represents the dimensions of word embeddings. And the graph on the right
plots the accuracy of each model over number of iterations.

To summarize, after lots of hyper parameter tuning, and implementing different ways of NLP data parsing.
Our final LSTM model with Tweet length 30, stop words included, 64 states in LSTM units, batch_size 24,
and 300 dimension word embedding is the best performing one among all what we have tried. And this
best performing model produces a final test set accuracy of 48.3%, beating human prediction by 5.3%, and
beating best performing SVM model by 1.8%. The model converges after around 50 epochs.

4.3 Model Comparison and Analysis

Comparing the prediction result on the final test set data, We found linear SVM to have better performance
than Naive Bayes model. This might be due to that Naive Bayes assumes independent conditional proba-
bility, which might not be true for our case. Some words appear more frequently than others. And SVM is
more immune to this short-come. We also found that LSTM model has the best accuracy. This is exactly
what we expected, because LSTM not only extracts features from different words (for instance "great" may
be a key word in the price rise), but also preserves the timing information of a piece of time series data. We
used Tensorflow LSTM dynamic cells to automatically unroll the time series into information that contains
the timing sequence information. Therefore, it does the semantic analysis based on the whole tweet con-
tent, instead of looking at each word individually. For instance when "great" appears together with some
privative prefix, it would more likely to lead to the drop of price. Thus, LSTM should be the most robust
among all of the models we implemented, and this is exactly what we observed.

5 Conclusion and Future Steps

To summarize, this has been an extremely fun dataset to work with. We can conclude that predicting Presi-
dent Trump’s Tweets does have the potential to be profit generating, because by deep learning, we were able
to beat human prediction by more than 5%, and reached an accuracy of 48% in three class classification
problem. However, only Trump’s Tweets seem to be not quite sufficient for us to make a deterministic pre-
diction. There are a large amount of changes of the market that we were not able to fit our limited features
with. We would advice anyone who want to explore more on trading with NLP to implement more features
in the future, including Tweets by some other politicians or celebrities, or news headline releases as well.

We manually put together this original dataset, in order to explore the potentials of NLP in the realm of
algorithmic trading, and also to understand politically how much weight each of President Trump’s Tweet
carries. The dataset size is not too small to cause over-fitting, yet not too large that requires excessive
amount of computing. Not only did we observe that our baseline can produce some very intuitive results,
we also observed a significant improvement in accuracy after switching to deep learning. We are overall
very pleased with what we learned. We give great thanks to the wonderful instructors and TAs for CS229
for providing great help over this short time frame for us to go this far with our project. And we definitely
plan to push the potential of our dataset further by publicly publishing it on Kaggle or some private GIT
platform to let other people try it in the future.

Group Contributions

Tong and Yuxin divided the work evenly, and both have had lots of fun putting this project together.

References

[1] “Trump Twitter Archive.” Trump Twitter Archive, www.trumptwitterarchive.com/.
[2] Wharton Research Data Services. , 1993. Internet resource.
[3] Pennington, Jeffrey. GloVe: Global Vectors for Word Representation, nlp.stanford.edu/projects/glove/.

[4] Zhang, Tong. "Solving large scale linear prediction problems using stochastic gradient descent algo-
rithms." Proceedings of the twenty-first international conference on Machine learning. ACM, 2004.

[5] C.D. Manning, P. Raghavan and H. Schiitze (2008). Introduction to Information Retrieval. Cambridge
University Press, pp. 234-265.

[6] V. Metsis, I. Androutsopoulos and G. Paliouras (2006). Spam filtering with Naive Bayes — Which
Naive Bayes? 3rd Conf. on Email and Anti-Spam (CEAS).

[7] Hochreiter, Sepp, and Jiirgen Schmidhuber. "Long short-term memory." Neural computation 9.8
(1997): 1735-1780.

[8] “Vector Representations of Words TensorFlow.” TensorFlow,
www.tensorflow.org/tutorials/word2vec.

[9] Deshpande, Adit. “Perform Sentiment Analysis with LSTMs, Using TensorFlow.” O’Reilly Media, 13
July 2017, www.oreilly.com/learning/perform-sentiment-analysis-with-1stms-using-tensorflow.

[10] “Libelli.” Text Classification with NLTK and Scikit-Learn . Libelli,
bbengfort.github.io/tutorials/2016/05/19/text-classification-nltk-sckit-learn.html.

	Problem Description & Motivation
	Dataset
	Raw Data
	Data Processing

	Methods
	Results and Discussion
	SVM model and Naive Bayes
	Recurrent Neural Network(LSTM)
	Model Comparison and Analysis

	Conclusion and Future Steps

