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Abstract

We are at unique juncture of human history where within next few years we may be able to confirm earth like planets or
earth’s twin around other stars where conditions are suitable for life to exists or even find a proof of life on those

planets.  NASA launched Kepler space telescope in 2009 which looked at a patch of sky and studied over 150,000 stars
and found around 2500 confirmed planets around other stars using transit method.  Scientist and researchers have

identified several of these planets which could be suitable for life based on planet and parent star's features.  Purpose of
this project is to use data generated from Kepler space telescope and come up with machine learning model which could

use planetary and stellar features to classify exoplanets into habitable and non-habitable planets. 

1. Introduction
Our Milky Way galaxy has estimated 100 to 400 billion stars, 
and close to 2 to 3 billion stars similar to our Sun.  
Observable universe is around 46 billion light years across in 
radius and contains around 100 billion galaxies.  Based on 
Kepler data, scientists have estimated that there could as 
much as 40 billion earth size planet in our own Milky Way 
galaxy alone [1].  Given these astronomically large numbers, 
there ought to be some stars, which have planets, where 
conditions are suitable for evolution of life or at least support 
life in the form we know. 

In early 90s, scientist started discovering planets around other
stars, called exoplanets, using gravitation pull of planets 
causing wobble in parent star’s revolution axis which caused 
red or blue shift in parent star's spectrum (called Radial 
Velocity method), and later on, using other techniques such as
Transit method.

Kepler space telescope was launched by NASA in 2009 to 
find exoplanets in our stellar neighborhood.  Kepler finds 
exoplanets by looking for tiny dips in the brightness of a star 
when a planet orbiting it crosses in front of it, we say the 
planet transits the star.

Once detected, the planet's orbital size can be calculated from 
the period (how long it takes the planet to orbit once around 
the star) and the mass of the star using Kepler's Third Law of 
planetary motion.  The size of the planet is found from the 

depth of the transit (how much the brightness of the star 
drops) and the size of the star.  From the orbital size and the 
temperature of the star, the planet's characteristic 
temperature can be calculated [2].  These Planetary and 
Stellar parameters are published using Kepler’s public data 
repository [3].  Kepler probe has found close to 9000 
“CANDIDATE” planets and approximately 2237 planets 
have been “CONFIRMED” as planets after vetting.

Scientist have studied these planets and identified several 
planets which may be habitable or suitable for life.  
“Planetary Habitability Laboratory” has published list of 
habitable planets [4].  A recently published paper “Planetary
candidates observed by Kepler. VIII” [5]  identified several 
new potentially habitable planets from Kepler data.  

This project’s goal was to take these data as training data, 
and use Planetary and Stellar features to build a machine 
learning model which could predict potentially new 
habitable planets as and when more “confirmed” planets are
published in Kepler’s exoplanet archive.

Output of this project is a computer program [6] that builds 
machine learning model and predict habitability of planets 
from Kepler exoplanet archive data [7].



2. Dataset and Features
Primary source of our data was NASA exoplanet archive [7].  
Each record in this archive represented one potential planet 
orbiting its parent star.  

For our training, we needed set of planets which have been 
identified as potentially habitable.  We obtained this list of 
habitable planets from “Planetary Habitability Laboratory”
[4] and from a recently published paper “Planetary candidates
observed by Kepler Kepler. VIII” [5].  In total, these sources 
identified 126 habitable exoplanets from Kepler’s data.

Since there was no explicit list of non-habitable planets, an 
assumption was made that all “confirmed” Kepler planets 
have been vetted for habitability and thus after removing 
habitable planets from “confirmed” planet list, whatever 
remained in “confirmed” planet list must be potentially non-
habitable planet.

Since habitable planets were scarcity, planets with both 
"confirmed" and "candidate" disposition were selected [8].  
Reasoning behind this was, even if "candidate" planet 
ultimately turned out to be "false positive", still its features 
would be a valid data point for our purpose.  For non-
habitable planets, we selected planets with only "confirmed" 
disposition [9].

126 habitable exoplanets and 2247 potentially non-habitable 
exoplanets were finally used in our training, dev & test 
exercise.

Each record of Kepler data was identified by a unique id 
called 'KOI' (Kepler Object of Interest).  Each record 
contained 140 attributes about observation.  There were 
several categories of attributes such as "exoplanet archive 
information" or "threshold crossing event" or other optical 
attributes [10] which were not directly related with planet’s 
habitability.  For habitability analysis we were interested only 
in planetary and stellar features. 

After analyzing each attribute of Kepler data from its 
description  [10], 14 planetary and stellar features were 
identified.  Some of these features are "Planetary Radius", 
"Isolation Flux", "Equilibrium Temperature", "Orbital 
Period", "Distance from parent Star", "Stellar Temperature" 
etc.  

"Forward Feature search algorithm" as well as “Recursive 
feature elimination with cross validation” were experimented 

with to find  feature set which provided most accuracy on 
dev data.   

“Forward feature search” adds one feature at a time in 
feature set, each time with a feature that produces lowest 
dev error with given model (SVM with ‘rbf’ kernel in our 
case).  

50/20/30 percent ratio of training, dev and test data was 
used during “forward feature search” algorithm.

In “Recursive feature elimination” algorithm, given an 
external estimator (SVM with ‘Linear’ kernel in our case) 
that assigns weights to features, recursive feature 
elimination is to select features by recursively considering 
smaller and smaller sets of features [11].

3. Methods
This was a binary classification problem.  Support Vector 
Machines (SVM) is a good model for this kind of 
classification problem.  

In a nutshell, SVM separates 2 classes of data through a 
hyperplane.  It tries to find a biggest margin between nearest
training data of 2 classes and hyperplane.

Above image [12] demonstrate SVM separating 2 classes of
data with a 2 dimensional line (This would be hyperplane in
higher dimensions) with largest margin and with closet 3 
training data called support vectors.  

Finding the hyperplane with maximum margin boils down 
to solving below primal problem
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Here K is a kernel with training data mapped to higher 
dimension using function ϕ
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ρ is a intercept term

“Radial Basis Function” (rbf) kernel was used in our model, 
which is of the form

K (x , x ' ) = exp (−ϒ ‖x−x'‖2
)

ϒ determines how far one training example's influence 
reaches.  Low value means influence is far while higher value
localizes that influence. 

Low value of 'C' tries to make decision surface smooth while 
a higher value make decision surface fit data better by 
selecting more support vectors.

‘Linear’ kernel was also used in experiments, which is of 
form:

K (x , x' ) =⟨x ,x ' ⟩

class_weight parameter value 'balanced' was used for scikit-
learn [5] SVM API  [13] to compensate for the fact that 
habitable planet training data were very small compared to 
number of non habitable planet training data.

scikit-learn SVM API [14] were used to implement our 
model.

4. Experiments
One of the early experiment was with Support Vector 
Machine classification model and with all of earlier 
mentioned 14 planetary and stellar features selected.  

In following diagram which is confusion matrix with all 
features selected,  we can see that almost 70% true habitable
planets (27) were predicted as non-habitable, which was 
unacceptably high.

Next,  “forward feature search” with ‘rbf’ kernel was tried 
to select most relevant features.  

One observation was, depending on distribution of training 
and dev data, some time, different feature sets were selected
by "forward search" in different runs.  To find feature set 
which represented lowest overall dev error, multiple 
iterations of "forward search" was done, each time 
randomly reshuffling training and dev data.  At the end we 
selected feature set which gave lowest error on dev data.  
During this logic, we used ‘rbf’ kernel.  

Confusion matrix from one of these runs is below:



Above we can see prediction of habitable planets becomes 
much more accurate compared with selecting all feature set.

An experiment was also performed to recursively eliminate  
features with K-fold cross validation using scikit-learn API
[11] and with ‘Linear’ kernel.   Scikit-learn “recursive 
elimination of feature” API did not support ‘rbf’ kernel.

Below is confusion matrix with “Recursive elimination of 
feature” experiment:

Above we can see, ‘Linear’ kernel with feature elimination 
identified habitable planets with high accuracy, but failure 
rate was high for non-habitable planets where it inaccurately 
identified 13 planets as habitable even though they were non-
habitable.

Error on training, dev and test data in percentage with 
“Forward feature search” and ‘rbf’ kernel was

Training Dev Test

0.35±0.10 1.0±0.50 1.0±0.25

Error on training and test data in percentage with “Recursive 
feature elimination with cross validation and Linear kernel”:

Training Test

1.5±0.10 1.5±0.75

5. Results
After training our model [6] on training data, we ran our 
model to do prediction on cumulative Kepler data [15] of 
planets of all disposition which contained 9564 planets data.  

This test was done to see what was the general trend of 
planets predicated by our model as habitable.

A scatter plot was created for habitable planets predicted 
with our model.  X axis is planet's distance from parent star 
in the unit of parent star’s radius.  Y axis is planetary 
equilibrium temperature [16] in degree Celsius.  Size of 
scattered points are planet's radius compared to Earth radius.
Below scatter plot is with 'rbf' kernel and "Forward feature 
search" :

Below second scatter plot is with ‘Linear’ kernel and 
"Recursive feature elimination with K-fold cross validation"
of predicted habitable planets on same cumulative data.

Every little speck of dot in these plots are one almost earth 
size planet.

In these results we can see, 'rbf' kernel predicted smaller 
number,  around 570 planets as habitable, while 'Linear' 
kernel predicted much higher number, approximately 800 
planets as habitable.  



This difference in behavior about predicted class from ‘rbf’ 
and ‘Linear’ kernel was similar to we had seen earlier in 
confusion matrix on “test data” that 'Linear' kernel tends to 
identify even non-habitable planets as habitable (higher false 
positive rate),  while 'rbf' kernel misclassified some habitable 
planets as non-habitable.  In other words, Linear kernel made 
more optimistic prediction thus larger number of planets were
predicted as habitable, while ‘rbf’ made less optimistic 
prediction with lower number.

In both cases we can see a common general trend.  We can 
see there is a high concentration of planets with equilibrium 

temperature of around 0±50 Co and with distance from 
parent star ranging from 100 unit distance to 400 unit 
distance.

For comparison, Earth is 215 unit distance from Sun and 

equilibrium temperature of Earth is around −13 Co .  The 
actual planetary surface temperature could be higher 
depending on amount of greenhouse gas effect similar to 

Earth where mean surface temperature is 27 Co  due to 
greenhouse [16].

Presence of liquid water is first requirement for planet to be 
able to support life.

Equilibrium temperature is very important as it tell us 
whether planet could be in Goldilocks zone of its parent star.  
Goldilocks zone of Star is a zone which is neither too cold 
nor too hot and allow water to exists in liquid form and thus 
have chance of supporting life.  Considering the effects of 

greenhouse gas, temperature range of 0±50 Co could 
place planet in Goldilocks zone.

Being relatively closer to parent star in comparison to parent 
star’s radius means there is a high probability that these are 
rocky planets as rocky planets generally form closer to their 
parent star.  We can see this in our Solar system where all 
inner planets, Mercury, Venus, Earth & Mars are rocky.  

Size of these planets were very similar to earth (0.5 to 2 
times).  Size is very important, as planet much smaller than 
Earth means it does not have enough gravity to hold onto an 
atmosphere, and very large size compared to Earth means it is
probably a gas giant and may not be suitable to sustain life.

All of above data indicates, features of planets predicated as 
habitable by our model were very similar to Earth.  Since we 
know Earth supports life, predicted planets could also have 
high chance of supporting life.

Model's prediction matching real world observation gives us
confidence that model developed was on right track. 

6. Conclusion
A program representing machine learning model  [6] was 
successfully created using data from Kepler mission and it 
also predicted habitable planets with characteristic that we 
expect from habitable planets.  SVM turned out to be a good
machine learning model for this classification project.

7. Future
Several new similar missions to study exoplanets such as 
TESS (Transit Exoplanet Search Satellite),  JWST (James 
Webb Space Telescope), WFIRST (Wide Field InfraRed 
Survey Telescope) are in the pipeline.  There would be an 
explosion of exoplanets data in future.  Machine learning 
would greatly help us in accumulating the existing 
knowledge about habitability through machine learning 
model and applying it on new data to quickly narrow down 
the habitable planet's list.  Machine learning model will also
become more accurate as and when more training data about
habitable planets from new sources become available.
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