
Whose Rap is it Anyways?
Using Machine Learning to Determine Hip-Hop Artists from their Vocabulary

Alex Wang, Robin Cheong, Vince Ranganathan
{jwang98, robinc20, akranga}@stanford.edu

December 14, 2017

Abstract

This paper presents results of using supervised classification models to predict the authorship of rap lyrics
based solely on the vocabulary. The models were trained on approximately two thousand songs by twelve

artists. The strongest resulting model is capable of classifying the original artist correctly 74% of the time on
unseen lyrics.

1 Introduction

Authorship identification and verification is a task that
is becoming increasingly relevant due to machine learn-
ing. The problem is to select the true author from a
given set of possibilities, based on characteristics of
the text. Current algorithms exist to identify authors
of literary prose, news articles, and tweets using tools
such as natural language processing, support vector
machines, and deep learning.

Rap, however, differs from prose in many respects.
Rap songs are typically around 400–600 words in
length, which means that there is a very limited
amount of information off of which to make a predic-
tion. Much of rap music also focuses around similar
themes, one of the reasons why guessing rap author-
ship based on language alone is a difficult task.

Our task is to identify the rapper of an input
song’s lyrics from a given set of rappers. The in-
put to our algorithm is the lyrics of a song, represented
as a single string. This is passed to the classification
algorithm – any of softmax regression, naive Bayes, a
neural network, or a set of SVMs – that outputs the
its prediction for the original author. The scope of the
project is currently limited to a fixed twelve rappers,
spanning three decades of rap music, that have “suf-
ficiently extensive discographies” (four or more studio
albums or mixtapes).1

Part of our motivation for undertaking this explo-
ration is that we are interested in using error analy-
sis to reveal and explore fascinating and non-obvious
characteristics about rap lyrics: What are common
and recurring themes in rap music? What makes each
rappers’ lyrics special and unique, or in other words,
which features does the algorithm choose to weight

most heavily? We hope that results from this research
can be used to shed light on these questions.

2 Related Work

There is fair amount of related literature non-specific
to rap music. Stanko et al. [SLH13] implement a series
of SVM one-versus-all binary classifiers to predict au-
thors from novels, using features concerning the struc-
ture of their writing. An upside of this is that it takes
advantage of the structural intricacies of the language
(e.g. “occurence of conjunctions per sentence”), but
it discards the actual vocabulary. The problem is ap-
proached from a different angle by Qian et al. [QHZ],
who use and fine-tune a variety of deep learning tech-
niques, presenting approaches to handling text at both
a sentence and an article level. This approach takes the
vocabulary into account, but is not concerned with the
structure of the prose.

Mechti et al. [MJB] target a broader goal, using au-
thor profiling to classify authors of anonymous tweets
and other social media-related forms of text. This is
a notably different, and much more general, task than
author identification, and is based on implicit informa-
tion about the authors from the text.

Mohsen et al. [MEMG] implement deep learning
techniques to develop characterizations of texts that
can effectively capture differences between authors’
writing styles, focusing primarily on the process of fea-
ture extraction. Stańczyk and Cyran [SC07] provide
a proof-of-concept that neural networks are efficient
for tackling problems concerning stylometric analysis.
These papers present optimistic preliminary results,
but these successes are based on models trained over

1 The selected rappers are Nicki Minaj, 50 Cent, Snoop Dogg, Lil Wayne, Jay Z, Nas, 2Pac, J. Cole, Kendrick Lamar, Drake,
Kanye West, and Eminem. The dataset comprises the entire discographies of all of these artists.

1

very large datasets.
There is little existing literature regarding human-

level performance in author – let alone rapper – iden-
tification. This is likely due to the fact that interest
in authorship identification has only risen noticeably
in recent years with advancements in machine learning
techniques.

3 Dataset and Features

3.1 Data Collection & Pre-processing

We used the Genius API, PyGenius, and Beautiful-
Soup to find the list of songs of each artists and scrape
the lyrics for each of these songs off of Genius (ge-
nius.com).

During pre-processing, we (i) removed all non-
lyrical data including punctuation from the lyrics. This
is to avoid strings such as “cat”, “cat,”, and “cat?”
from being treated differently, and to prevent indica-
tors such as “[Verse 2]” from appearing. We (ii) applied
stemming to each word using the Natural Language
Toolkit [BLK09], since some words, especially verbs,
have many different endings even though they be used
in the same way. As an example, “walk”, “walks”, and
“walked” all refer to the same action of walking. These
new objects are hereafter refered to as tokens.

We noted that neither of these actions – punctua-
tion removal and word stemming – affected words or
sounds that are included in the lyrics but not present
in the English language (or are considered ‘explicit’).
This is important, as we would not want pre-processing
to affect the validity of our results in any manner.

We partitioned the dataset into train, dev, and test
sets encompassing 70, 15, and 15 percent of all songs
respectively. These songs are split up randomly for
each artist to ensure that there is balance across the
three sets.

3.2 Feature Extraction

The features are determined by the vocabulary of a
song, which is the words that it uses. We used four
metrics of ‘term frequency’ (TF) [Ull11] that deter-
mine the importance of a word in a song:

count number of times word w occurs in the song,
denoted f(w)

binary 1 if word w occurs in the song, else 0

log 1 + log f(w), or 0 if f(w) = 0

norm 1
2

(
1 + f(w)

maxw′ f(w′)

)
, preventing bias towards

lengthier songs

Thus for every input, we have four potential feature
vectors, depending on the specific TF metric chosen for
the experiment.

These values are multiplied by the IDF (Inverse
Document Frequency) of the token, to weight words
based on how frequently they appeared across all doc-
uments.

IDF(w) = log
m∑m

i=1 1{w ∈ x(i)}
(1)

Thus, extremely common words like ‘the’ and ‘is’
would have a lower weight than uncommon words like
‘purple’.

During the feature extraction process, we construct
the model’s “Bag of Words” (or “lexicon”), which is
the union of the set of tokens present in each song.
Any token that occurred fewer than 10 or more than
1,000 times across the data was filtered out to reduce
overfitting to rare words (which are strongly indicative
within the training set, but not generalizable), thereby
decrease the total number of features from 29,620 to
4,970. We noted that this filtering process increased
the accuracy of each of our models.

Figure 1: Lower and upper cutoffs based on word

frequency in the training set.

Thus, our dataset is given by {(x(i), y(i)); i =
1, ...,m} where x(i) ∈ Rn and y(i) ∈ RK , where n is
the number of words in the vocabulary and K = 12 is
the number of classes that we are classifying.

4 Methods

We proposed and developed the following models:

4.1 Naive Bayes

As a simple baseline performance measure, we general-
ized both the multi-variate Bernoulli event model
and multinomial event model of Naive Bayes to
a multi-class classification setting and added Laplace
smoothing. Thus, our MLE parameters were given by:

φj|y=k =

∑m
i=1 1{x(i)j = 1 ∧ y(i) = k}+ 1∑m

i=1 1{y(i) = k}+K
(2)

φk =

∑m
i=1 1{y(i) = k}

m
(3)

for the multi-variate model and

φj|y=k =

∑m
i=1 x

(i)
j 1{y(i) = k}+ 1∑m

i=1 1{y(i) = k}+K
(4)

2

φk =

∑m
i=1 1{y(i) = k}

m
(5)

for the multinomial model.
Both estimate the probabilities of observing feature j
given that example i is in class k by summing either
the appearance or the number of occurrences of the
feature given a class (multi-variate vs. multinomial)
and normalizing over the number of examples in class
k. The probability of a class φk is just the number of
occurrences of the class in the data set. We can es-
timate the likelihood of observing a new data point x
then by calculating

p(x) = p(y)

n∏
i=1

p(xi|y) (6)

and make a prediction for its label by finding the
class k that maximizes the log-probability of the data:

argmax
k

n∑
i=1

log[p(xi|y = k)] + log[p(y = k)] (7)

We also note that Naive Bayes relies on the counts
or appearances of individual words to find the maxi-
mum likelihood estimation of the parameters, and so
a log or norm representation of the features would not
applicable for this model.

4.2 Softmax Regression

To improve from Naive Bayes, we implemented soft-
max regression which assumes that the likelihood of
the data is given by

m∑
i=1

log

k∏
l=1

(
exp

(
θTl φ(x(i))

)∑k
j=1 exp

(
θTj φ(x(i))

))1{y(i)=l}

(8)

We trained the algorithm using batch gradient de-
scent with a regularized version of the cross-entropy
loss:

CE = −
m∑
i=1

K∑
j=1

1{y(i) = j} log(ŷ
(i)
j) +

λ

2
||W ||22 (9)

where ŷ
(i)
j is the softmax output on example i for

class j and λ was set to 1.

4.3 Neural Network

Compared to softmax regression, neural networks have
the ability to capture relationships between features.
By implementing a simple neural network, we thought
it may pick up on a deeper structure within the lyrics
and thus generalize well to the dev set.

Our final implementation is a single fully-connected
hidden layer with 360 neurons. The hidden layer uses
ReLU activation, and the output layer uses softmax
activation for multiclass classification. To train our

model, we used AdamOptimizer in Tensorflow with the
Softmax Cross-Entropy loss function [AAB+15].

To make a prediction, we run an iteration of
forward-propagation according to the formula:

z[l] = W [l]a[l−1]b[l] (10)

a[l] = g[l](z[l]) (11)

where g[1] is the ReLU function, and g[2] is the soft-
max activation function. We then take the argmax
of the softmax output which corresponds to finding
the most likely label. To update the set of weights,
W [1], b[1],W [2], b[2], we perform back-propagation by
computing the gradients of the cross entropy loss with
respect to each of the layers.

4.4 Support Vector Machines

The last model we implemented is a One-vs-rest SVM
classifier. We trained 12 different SVM classifiers on
each of the authors, and predicted the artist that cor-
responded to the highest positive margins. Each indi-
vidual SVM used the Gaussian kernel and hinge-loss
function and was trained with scikit [PVG+11].

`hinge =

m∑
i=1

max(0, 1− y(i) W · φ(x(i))) (12)

To make a prediction, we input the test set’s fea-
tures into each SVM. We then obtain each SVM’s pre-
diction and corresponding margin, and find the argmax
of product of the two values.

ŷ(i) = argmax
k

(
ŷkWk · φ(x(i))

)
(13)

5 Experiment, Results and Dis-
cussion

We chose accuracy as our primary metric for success.
The accuracy levels for each model-feature type pair,
over the train and dev sets, are as follows:

Figure 2: Accuracy levels for each model. White

represents training set; light blue represents dev set; red is

best model.

The best performing model is the SVM using the
TF = Norm feature vector, and after retraining on
a combined train-dev set, we get a test accuracy of
74.3%.

Below are the receiver operator characteristic
(ROC) graphs illustrating the diagnostic ability of each

3

of the twelve SVMs (split between two graphs for read-
ability purposes).

Figure 3: ROC graph for classes 0 through 5

Figure 4: ROC graph for classes 6 through 11

As evident from the ROC graphs, our One-vs-Rest
SVM classifier does very well, achieving high true pos-
itive rates and low false positive rates. Similarly, the
AUROC (area under the ROC curve) metrics are all
relatively close to 1.0.

Figure 5: Confusion matrix for the SVMs-Norm model

From the confusion matrix, we can see that the clas-
sifier does poorly on Snoop Dogg, 2Pac, and Kendrick
Lamar. What is interesting is that the classifier seems
to have trouble discerning between Snoop Dogg and
2Pac, often predicting one person’s song as the other’s.
One possible reason for this phenomenon is the fact
that both started their careers in the early 90’s and
were very productive in the mid 90’s. This notion is
further supported by the fact that the second most
guessed artist for Snoop Dogg’s songs is Nas, who was

also very prominent in the 90’s compared to the other
rappers in the list. Perhaps time period plays a very
important role in the word choice and style of rap
songs.

5.1 Hyperparameters and Optimiza-
tion

5.1.1 Softmax Regression

After trying a few different learning rates, we found
that using α = .002 as the initial learning rate was ef-
fective. Once the change in the L2-norm of the weights
after each iteration was less than .01, however, we used

α(t) =
||W (t) −W (t−1)||22

10
(14)

so that the learning rate would shrink as the algo-
rithm progressed.

Because the number of songs we had per artist was
relatively small, we decided to use batch gradient de-
scent instead of mini-batch or stochastic gradient de-
scent, and set our convergence criteria to

||W (t) −W (t−1)||22 < ε (15)

where an ε value of 10−5 was found to work best.
Later, early stopping was used to reduce overfitting
with the maximum number of iterations set to 400.

5.1.2 Neural Network

We experimented with several setups, each with dif-
ferent numbers of layers, numbers of hidden nodes per
layer, and regularization constants. We identified that
the neural network was very prone to over-fitting, and
additional layers exacerbated this issue. The best re-
sults were achieved with a single hidden layer with 360
neurons, and a regularization constant of λ = 0.05 al-
lowed the model to generalize well while maintaining
high accuracy on the training set.

5.2 Sources of Error

It is particularly important to understand the likely
sources of error, as none of the models performed ex-
ceedingly well after extensive data pre-processing and
hyperparameter tuning. We have identified the follow-
ing as key sources of error:

1. Collaborations between rappers: artists fre-
quently feature other lyricists on their songs. As
a result, it is possible that as much as half of the
lyrics to a song are not written by (and therefore
should not be attributed to) the original artist.
To adjust for this, the model can be altered to
report the two most likely artists. For each of
softmax, neural networks, and SVMs (all with
Norm feature vectors), the accuracy of the top
two guesses is as follows: softmax: 88.1%, neural
networks: 87.6%, SVMs: 88.3% .

4

2. Ratio of #features to #training examples:
with a (post-filtering) feature vector size of 4,970
and a training set size of ≈ 200 for each rapper,
we have m � n. This contributes to the ob-
served issue of high variance, since the models
become much more prone to overfitting to the
training data, which we confirmed from plotting
the learning curves on the data:

Figure 5: Plot of Loss vs. Training set size for the

one-vs-all SVMs

Due to the nature of the data–i.e. since rappers
have a limited number of published works–it is
not possible to significantly increasem. However,
it may be possible to further reduce n through a
feature-selection process such as PCA.

To address this issue, we attempted to add reg-
ularization, but identified that regularizing the
weights did little to prevent overfitting. In fact,
for small values of λ (λ < 5), there was no no-
ticeable change in train and dev accuracy, and
for large values of λ, train and dev accuracy de-
creased noticeably. Upon examining the weight
matrix, we discovered that the learned weights
without regularization were already small. Thus,
regularization had little effect.

We also implemented early stopping techniques
and found that, rather than allowing the algo-
rithm run until convergence, restricting the num-
ber of iterations to 300 slightly improved dev set
accuracy of the softmax model from 74.1 to 74.4.

3. Incomplete lexicon: the model’s “bag of
words” is determined and fixed during the train-
ing period. As a result, any tokens identified
in the test input that were not found during
the training phase are ignored entirely. This
means that the algorithm is discarding a signif-
icant amount of valuable information. One ap-
proach to resolving this is using a model that uses
a “similarity” metric to compare unseen tokens
to known ones. This for example, might connect
the previously-unseen word “cash” to the known
word “money”, and affect the corresponding fea-
ture component.

4. Limitations of the “bag of words” model:
the ”bag of words” model entirely discards the
structure of the song and relationships between
different words, which removes a huge compo-
nent of an artist’s style that would be useful in
identifying one from another. To bypass this lim-
itation, an algorithm that takes into account the
entire structure of the data, such as an RNN,
could be used.

6 Conclusion and Future Work

We have developed and tested multiple classification
models to identify the author of an input of rap lyrics
based on vocabulary. Hyperparameters were tuned in
order to filter out extremely rare or common words
from consideration, and to experiment with different
types of feature extractors. The highest performing
model was the set of one-vs-all SVMs, using the Norm
feature extractor. This achieved a combined train-dev
set accuracy of 96.8% and test set accuracy of 74.3%.
However, in general, all algorithms aside from Naive
Bayes performed in the mid-70s in terms of accuracy
(softmax: 74.1%, NN: 72.7%). Interestingly, neural
network’s performed the worst, likely because, as a
more complex model, it easily overfits to the training
data and fails to generalize well.

Future work on this topic would primarily involve
reducing the variance of the model by modifying the
dataset to separate collaborative songs into indepen-
dent contributing artists, reducing the number of fea-
tures, using measures of word similarity, and imple-
menting k-fold cross validation.

5

Contributions

• Alex Wang: data collection, testing, Naive
Bayes, neural network, SVMs, documentation

• Robin Cheong: softmax regression, testing, fea-
ture extraction, Naive Bayes, error analysis, doc-
umentation

• Vince Ranganathan: data pre-processing, fea-
ture extraction, softmax regression, error anal-
ysis, documentation

References

[AAB+15] Mart́ın Abadi, Ashish Agarwal, Paul
Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Ian Goodfellow, Andrew Harp, Ge-
offrey Irving, Michael Isard, Yangqing Jia,
Rafal Jozefowicz, Lukasz Kaiser, Manju-
nath Kudlur, Josh Levenberg, Dan Mané,
Rajat Monga, Sherry Moore, Derek Mur-
ray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Ku-
nal Talwar, Paul Tucker, Vincent Van-
houcke, Vijay Vasudevan, Fernanda Viégas,
Oriol Vinyals, Pete Warden, Martin Wat-
tenberg, Martin Wicke, Yuan Yu, and Xi-
aoqiang Zheng, TensorFlow: Large-scale
machine learning on heterogeneous sys-
tems, 2015, Software available from tensor-
flow.org.

[BLK09] Steven Bird, Edward Loper, and Ewan
Klein, Natural Language Processing with
Python, O’Reilly Media Inc., 2009.

[MEMG] Ahmed M. Mohsen, Nagwa M. El-Makky,
and Nagia Ghanem, Author Identificaton
using Deep Learning.

[MJB] Seifeddine Mechti, Maher Jaoua, and
Lamia Hadrich Belguith, Machine learn-
ing for classifying authors of anonymous
tweets, blogs, reviews and social media.

[PVG+11] F. Pedregosa, G. Varoquaux, A. Gramfort,
V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay,
Scikit-learn: Machine learning in Python,
Journal of Machine Learning Research 12
(2011), 2825–2830.

[QHZ] Chen Qian, Tianchang He, and Rao Zhang,
Deep Learning based Author Identification.

[SC07] Urszula Stańczyk and Krzysztof A Cyran,
Machine learning approach to authorship
attribution of literary texts, International
Journal of Applied Mathematics and Infor-
matics 1 (2007), no. 4, 151–158.

[SLH13] Sean Stanko, Devin Lu, and Irving Hsu,
Whose Book is it Anyway? Using Ma-
chine Learning to Identify the Author of
Unknown Texts.

[Ull11] Jeffrey D. Ullman, Data Mining, 2011.

6

