“Do I Hear 3NT?”: Learning a Bridge Bidder
Greg White (gregw@stanford.edu)

Predicting
- This project attempts to learn the optimal classification for two important sub-problems of Bridge’s bidding phase
 - Given a 13-card hand, which of 36 possible opening bids should the player use?
 - Given two 13-card hands, in which of 36 possible final contracts should the team end?
- An opening bid and a final contract can each be one of Pass or [1-7][NT|S|H|D|C]
- Bidding in Bridge is a nuanced problem that takes human players a long time to learn; possibly extensible to state-based or logic-based AI with learning underpinning

Data
- Data is from tournament hands played by human experts and other computer agents available from a variety of sources that publish results of their tournaments
 - Opening bid data starts with 13 card hands for each of 4 players and sequence of bids
 - Translate to hand-bid labeled data for each player up to and including first non-Pass bid
 - Possible multiple labels: only training and testing if no disagreement, reporting two error figures
 - Final contract data requires processing to label ground truth (solving full-information game tree problem, uses 3rd party library)

Models and Features
- Softmax regression using two types of features. Maximize log-likelihood:
 \[
 l(\theta) = \sum_{i=1}^{m} \log \prod_{j=1}^{36} \left(\frac{e^{\theta_j^T x(i)}}{\sum_{j=1}^{36} e^{\theta_j^T x(i)}} \right)^{1(y^{(i)} = j)}
 \]
 using stochastic gradient ascent:
 \[
 \theta = \theta + \alpha \left(\frac{1}{1+\sum_{j=1}^{36} e^{\theta_j^T x(i)}} \right) (y^{(i)} - \hat{y}(\theta, x(i))) x(i)
 \]
- Two feature extractors:
 - Raw card indicators: for all 52 cards
 - Limited domain knowledge indicators: # cards per suit, number of high card points per suit and total

Results
- *Opening bid problem*: low error, model generalizes well, and misclassifications are on borderline decisions for human players (and many of those classify correctly)
 - Train Error
 - Agreed
 - All
 - Labels
 - 16.6K
 - 9.6K
 - 4.7K
 - 2.7K
 - Dev Error
 - Agreed
 - All
 - Labels
 - 16.0%
 - 10.4%
 - 16.9%
 - 11.1%
 - Raw feat.
 - 16.0%
 - 10.4%
 - 16.9%
 - 11.1%
 - Domain feat.
 - 10.3%
 - 5.3%
 - 12.5%
 - 6.6%
- *Final contract problem* has not had positive results yet (see discussion and future work)

Discussion
- Opening bid results with simple domain features are better than expected
 - Raw card features generalize better than expected
 - Problem may be simpler than seems
 - Fewer than 36 classes with large probabilities
 - Relatively rote decision for human players, more nuance introduced with sequential bids
 - Final contract model oversimplifies and predicts few classes, with additional time refining would be a key next step

Future Work
- Final contract problem: additional features, debugging model/algorithm
- Sequential bidding agent: incorporate state- and/or logic-based model
- Learning vs. programming: in competition, must follow explainable conventions

References
- Mernagh, Michael, “Learning a Double Dummy Bridge Solver”, 2016 CS229 Final Project