Motivation

- The motivation of this project is to predict the probability for a user to file complaint for a certain delivery. With the prediction, we can also determine the top triggers that make a user furious and improve the customer experience during a delivery.
- The S.F. express company is the second largest carrier in China. This project is proposed based on the company’s current business needs.

Data

- The dataset comes from S.F.’s real delivery history, represented in CSV format with 40 columns as attributes and 22000 rows as input entries. After cleaning null and irrelevant attributes, 27 attributes are selected as potential features.
- Data Pre-Processing: the selected potential features exist in numerical, binary, and categorical formats. We normalized the features into the form of feature matrix as follows. Note that to avoid Dummy Variable Trap, a categorical variable with n categories is projected to n-1 columns. The resulting feature matrix has 87 columns.

\[
\begin{align*}
\begin{array}{l}
 x_1 & \rightarrow & \text{numerical} & \in & \mathbb{R} \\
 x_2 & \rightarrow & \text{categorical} & \in & \{A, B, C\} \\
 x_3 & \rightarrow & \text{binary} & \in & \{0, 1\}
\end{array}
\end{align*}
\]

- Class Unbalance Issue: the dataset is highly unbalanced with 2000 complaint entries and 20000 non-complaint entries. To solve this issue, we created three balanced datasets each containing all 2000 complaint entries and 2000 randomly selected non-complaint entries. The following feature and model selection are performed on all three balanced datasets.

Feature Selection

- **Z test**: we assumed that a feature is considered relevant to the prediction when we reject the hypothesis that a coefficient equals to zero. When Z=2, we have 95% confidence to reject null hypothesis and claim the coefficient is statistically significant.
- **Lasso**: we performed a cross-validation to estimate the expected generalization error for each λ. The value of λ was chosen based on CV MSE to be 0.02. An example on set 1 is presented on the right.

- Within each process, a Parameter Optimization technique is applied where we defined parameters to be either Fixed or Inter-correlated.
- For Fixed parameters (e.g. max feature in RF), we performed AUC optimization adjusting this parameter until reaching maximum AUC.
- Inter-correlate parameters (e.g. depth, min sample split, and min sample leaf RF) are adjusted in a recursive manner where a portion of this parameters group is adjusted while the rest are fixed. We repeat this adjustment until maximum AUC is reached.

As a result of our feature selection, 40 features were eliminated and 16 above features were considered significant.

Model Selection

- Logistic regression with the selected features and balanced data set achieved average AUC score of 0.64, which is selected as our baseline model. Logistic regression with Lasso reach an average AUC of 0.65.
- To achieve better performance, we attempted Random Forest (RF), Gradient Boosting Decision Tree (GBDT) and XGBoost. We performed a Parameter Selection Process on all of the three methods and an example of this process applied on RF is shown as fellows.

Results

- **Optimized Parameters**

<table>
<thead>
<tr>
<th>Method</th>
<th>n_estimators</th>
<th>max_depth</th>
<th>min_samples_split</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF</td>
<td>110</td>
<td>17</td>
<td>50</td>
</tr>
<tr>
<td>GBDT</td>
<td>95</td>
<td>11</td>
<td>50</td>
</tr>
<tr>
<td>XGBoost</td>
<td>100</td>
<td>11</td>
<td>50</td>
</tr>
</tbody>
</table>

- **Resulting AUC score**

Discussion

- **Linear vs. Tree**: in this real life problem, most features do not have a linear property. Other linear models including stepback were also attempted. However, the improvement from feature selection in the linear models are not significant and a tree structured model performs better at capturing the non-linearity.
- **ROC Curves**: when using unbalanced dataset, GBDT and XGBoost has better performance of true positive rate, therefore better chance to distinguish complaint cases.

Future Work

- For future work, we are interested in improving the class bias problem. Since real-world complaint data only occupies a little portion in the whole dataset. Solving this problem can reduce the false negative classifications and meet real companies’ needs.