Motivation

- Typing up mathematical equations has become quite a necessity when submitting academic papers, writing and solving problem sets, presenting mathematical concepts, and much more.
- We’re looking to automate the process of converting handwritten expressions to LaTeX using modern Machine Learning techniques.

Datasets

- Our dataset includes the traces of 10,000 handwritten expressions mapped to the corresponding ground truth LaTeX expression (obtained from Kaggle).
- We split the data into 80% train, 10% dev, and 10% test. We use traces for CSeg, normalized pixel arrays for OCR, and traces with segmented characters for SA.

Features

- **Segmentation:** features come from data. SVM uses features including overlap, inverse horizontal, vertical, and centroids distance, and horizontal containment, which are the main ingredients for grouping traces.
- **Character Recognition:** SVM and NN use data based features include normalized flattened greyscale pixel size. We derived Histogram of Oriented Gradients (HOG) from the pixel array – improves image recognition by using overlapping local contrast normalization.

Methods

- **Character Segmentation (CSeg)**
 - **Input:** list of all traces for equation. **Output:** traces grouped by characters.
 - **Overlap:** merges overlapping strokes. All other strokes are separate.
 - **SVM:** uses a binary SVM with a linear Kernel, L1 regularization, and C value 50. Binary SVM loss function: \(L = \frac{1}{2} \sum_{x \in D} (y \cdot h(x) - t)^2 \)
 - **NN (binary classification):** with single hidden layer, softmax and sigmoid activation, and cross entropy loss. Input is a 32X32 flattened pixel array of a single or multiple strokes. Output is whether or not the image is a valid LaTeX symbol.
 - **Beam Search:** we use beam search to explore possible segmentations. We maximize the segmentation score, which is based on NN prediction (confidence of it being a valid character). \(\text{score} = \arg\max_{\theta \in \Theta} \sum_{g \in \Theta} \log P(g) \)

- **Character Recognition (OCR)**
 - **Input:** normalized pixel array. **Output:** character’s LaTeX representation.
 - **SVM:** uses multiclass SVM with a linear Kernel, L2 regularization.
 - **Multiclass SVM loss:** \(L = \frac{1}{2} \sum_{x \in D} \max_{y \in Y} f(y; x) - f(y; x) + \delta_{y; \hat{y}} + \frac{1}{C} \sum_{e \in \Theta} \text{regularization} \)
 - **NN (multiclass):** uses same internal structure as NN in CSeg. Output is the classification of the LaTeX symbol. \(CE(y, \hat{y}) = - \sum_{y \in Y} y \log \hat{y}_y \)
 - **Cross entropy loss:**
 - **CNN:** multiclass CNN with 5 hidden layers, ReLU activation function, and cross entropy loss.

Experimental Results

- **OCR Accuracy:**
 - **CNN:** 44% NA
 - **SVM:** 53% 53%
 - **Binary NN:** 64% 96%

- **SA Analysis Accuracy:**
 - **Baseline:** Test 14% 65%
 - **Heuristics:** Test 14% 65%

Discussion

- Most character recognition errors come from symbols that do not appear as frequently in dataset (e.g. \(\mu \)).
- Segmentation: NN beam search and the binary SVM achieve similar accuracy (64%). Beam search tends to group traces that should remain separate. Binary SVM tends to keep strokes separated.
- We are working on improving our Structural Analysis. We are struggling with how to accurately test the output and train models and are currently reporting accuracy by hand to preserve correctness.

Future Work

- **CSeg:** implement a combined model using NN beam search and SVM predictions to increase accuracy. Use Adaboost and multi-scale shape context features.
- **OCR:** Experiment with advanced OCR techniques such as Random Forests to help improve the accuracy of our CNN and SVM. Use data augmentation techniques to add examples of uncommon symbols.
- **SA:** We plan on finding or implementing a LaTeX parser that will enable us to train an SVM to aid our current model in correctly building square root, exponents, and other more complex equations.
- **E2E:** implement a CNN for an end to end approach (similar to Google’s Tesseract).

References