Introduction

Our project aims at transcribing the melody of a song, where we represent an input audio by spectrograms, from which we use CNN to predict the pitches. CNN is shown to be more effective than traditional models, and our model outperforms the baseline by a large margin.

Dataset

- **Spectrograms** generated from .wav audios in Medley DB with frequency annotations sampled every 5.8 ms and 46 ms
- **Mel Spectrogram** — timber
- **Constant-Q Transform** — pitch

Neural Network Architectures

CNN-based Models

- 5 conv layers + 4 max pool + 2 FC
- Batch norm after each conv layer
- Dropout (0.6) after first FC layer
- Descending LR + momentum (0.9)

Combining inputs

- Use both types of spectrograms to enrich the input (i.e., more features).
- We explored 4 ways to combine the data:
 - **Stacking**: concatenate Mel and CQT spectrograms
 - **Early fusion**: separate first layer + share the remaining
 - **Late fusion**: separate first four layers + fuse at the last
 - **Averaging**: average the outputs from Mel and CQT

Polyphonic

- Predict multiple notes at a time
- Multi-label soft margin loss

Error Analysis & Output

- **Features Visualisation**: We visualise the features learned by the CNN, by applying PCA and t-SNE.
- **Example output**: Ground truth
- **Confusion Matrix**: Imbalanced classes

Results

Top 1 accuracy:

- **librosa (baseline)**: 25%
- **Mel**: 76.5%
- **CQT**: 75.7%
- **Stacking**: 75.6%
- **Early fusion**: 77.1%
- **Late fusion**: 77.2%

Top 5: 96.8%

Future work:

- handle unbalanced classes and polyphonic outputs, and better analysis (e.g., genre)

References

- Convolutional neural network for robust pitch determination, Su et al., 2016
- HMM-based multipitch tracking for noisy and reverberant speech, Jin et al., 2011
- Medley DB, a Multitrack Dataset for Annotation-intensive MIR Research, Bittner et al., 2014