Dynamic loan default prediction
Maxime Rivet, Marc Thibault, Mael Trean
CS229, University of Stanford

Motivation
Predicting the outcome of a loan is a recurrent, crucial and
difficult issue in insurance and banking.

The objective of our project is to predict whether a loan will
default or not based on objective financial data only.

We used a dataset provided by LendingClub concerning al-
most 1 million loans issued between 2008 and 2017.
Since a default is far more costly for a loan issuer than a
missed loan, we focused on maximizing the F-score as an
evaluation metric for our algorithm.

Using a very structured pipeline to load and test algorithm,
we reviewed most of the classification Machine Learning
strategies to extract information from the very noisy data
provided by LendingClub.

Data

It consists into approximately 800,000 samples of loans
granted by the company, with the full set of informations
about the borrower, the history of payments and the out-
come of the loan.

The dataset is quite clean and the figures can be considered
as ground truth, but lots of columns are either irrelevant,
very sparse or non informative. Moreover, the dataset is very
unbalanced, with approximately 17% of loans considered as
defaulted.

Since the objective is to predict the outcome from the infor-
mations gathered at the signature of the loan, we cannot use
the data concerning the history of payments or the current
situation of a loan.

Excluding features for which the information is incomplete,
or uninformative, we get a total of 19 features, that cover
personal information (credit grade, income, housing status,
...) and credit information (amount, interest rates, ...).

Accuracy is not well-suited for our problem. The unbalance
of the classes would lead an algorithm to never predict a
default. \(F_1 \)-score allows us to quantify a good prediction on
both precision and recall.

\[
F_1 = 2 \cdot \frac{\text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}
\]

The dataset is not well separated, as this TSNE denotes.
Our approach consists in taking class unbalance into account
when training our learning algorithm, with the three follow-
ing methods:

- Force a fixed class balance \(p \) in the training set by
 resampling,
- Change the limit \(\alpha \) above which the algorithm outputs 1
 from the \text{predict_proba} \(\rightarrow z_i = 1_{\{y_i > \alpha\}} \),
- Balance the loss function to penalize the misprediction of
distinct classes differently:

\[
L_i = \omega_1 y \log(y) + \omega_0 (1 - y) \log(1 - y).
\]

We then grid over the parameters of these methods:

- fixed class occurrence ratio \(p \),
- limit \(\alpha \),
- penalization parameters \(\omega_0, \omega_1 \).

We then optimize the \(F \)-score we obtain on the dev set, in
order to make sure that we do not overfit.

We reach a \(F \)-score of 38\% by balancing classes upon train-
ing.

Further enhancements

- The exploration of the stacking of models sounds
 promising, and would probably be the best exploration
 axis if we had more time to spend on this project.
- Dynamic predictions by updating them when payments
 are due might allow a more precise risk management for
 the issuer. Time and status of payments can bring
 important insight in order to spot default risk.

Combining classifiers

We added a regression of regressions approach, which consists in:

- Train several classifiers
- Output \text{predicted_probability} for each sample and
each classifier
- Run a second classifier with the outputs of individuals
 classifiers as features

The stacking of different models is also quite promising, since
it allows to take advantage of the best classification possibil-
ities of each model.

The results are better on test data, as we reach 43\% of \(F \)-
score.

\[
\begin{array}{cccc}
\text{Reality vs. Predicted} & \text{Fully paid} & \text{Defaulted} \\
\hline
\text{Fully paid} & 84,944 & 12,032 \\
\text{Defaulted} & 62 & 18,012 \\
\end{array}
\]

Individual classifiers results

Our three cross-validation methods yield significantly good
results, beating the random choice on this extremely intri-
cated dataset.

We reach a \(F \)-score of 41\% by shifting the decision frontier.

We reach a \(F \)-score of 39\% by penalizing labels distinctively.

Models

The main models we used are:

- Regularized Logistic Regression, from \text{sklearn}
- Gradient Boosting Decision Trees, from \text{xgboost}

References

Introduction to stacking
http://blog.kaggle.com/2016/12/27/a-kagglers-guide-to-model-
stacking-in-practice/

Kaggle dataset and best preprocess :
https://www.kaggle.com/vincepota/predicting-customers-who-will-
charge-off

Dealing with unbalanced datasets :
https://axel.com/learning-imbalanced-classes/