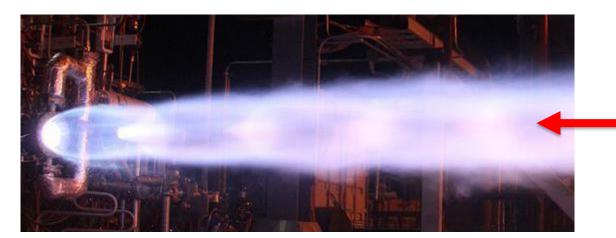
Efficient and Accurate Time-integration of Combustion Chemical Kinetics using Artificial Neural Networks

Wen Yu Peng (wypeng@stanford.edu) & Nicolas H. Pinkowski (npinkows@stanford.edu)

Background and Motivation

Goal: Reduce computation time for timeintegrating chemical kinetics mechanisms

- Chemical kinetics: central to design of practical combustion systems such as internal combustion and rocket engines
- Currently: computational fluid dynamics (CFD) models plus reaction mechanism with expensive ODE solvers are used in the design process



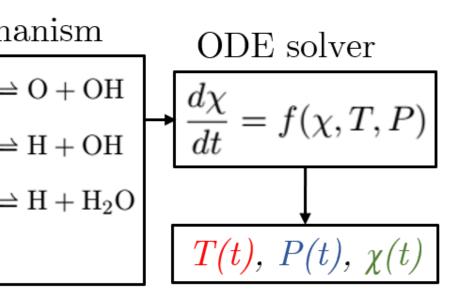
Problem: Chemistry difficult and slow to model together with CFD

If we can increase computational efficiency 🐚 then we can design more efficient engines

Problem Description

Typical ODE-based method for implementing reactive CFD

	Rxn mechanism						
T_{θ}	$H + O_2 \xleftarrow{k_1} O + OH$						
P_{θ}	$O + H_2 \rightleftharpoons^{k_2} H + OH$ $OH + H_2 \rightleftharpoons^{k_3} H + H_2O$						
χo							



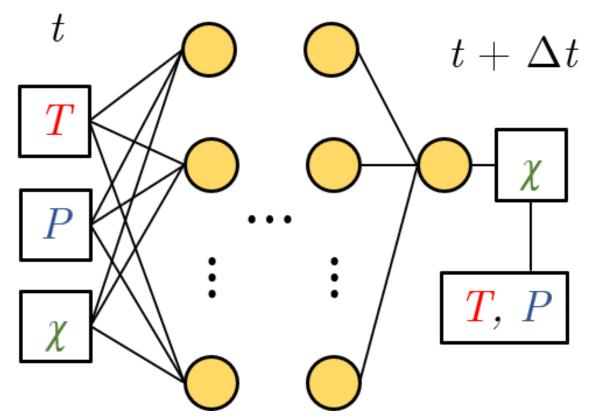
T = Temp [K]P = Pressure [atm] $\chi =$ Mole fraction

 H_2 oxidation: 8 chemical species 20 reactions

- Accurate outputs ✓
- Major problem: stiff ODEs require expensive implicit integration
- •Intractable with modern mechanisms (e.g. gasoline surrogate \rightarrow

1550 species + 6000 reactions)

Proposed neural network-based method

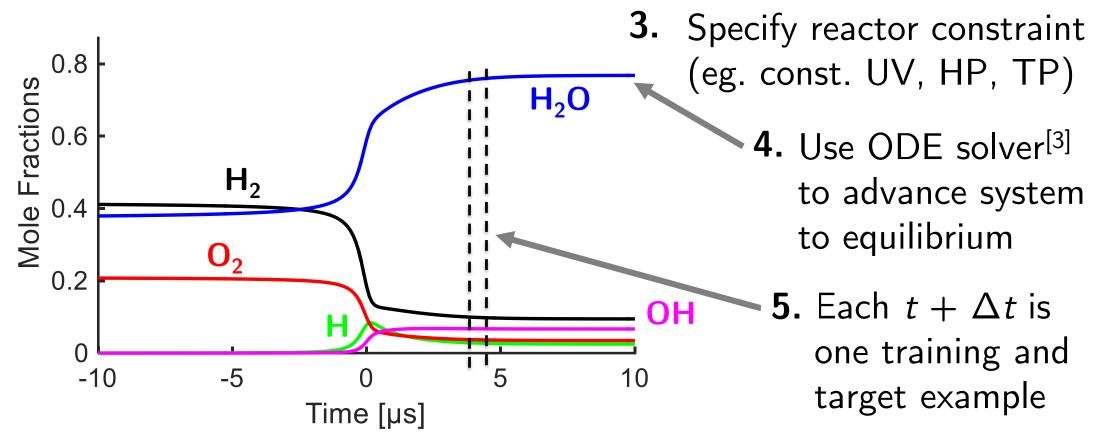


- Replace time-integration of mechanism with artificial neural network (ANN)
- Computationally cheap ✓
- Approximate outputs good enough for CFD \checkmark
- Tradeoff: High up-front cost for generating training data

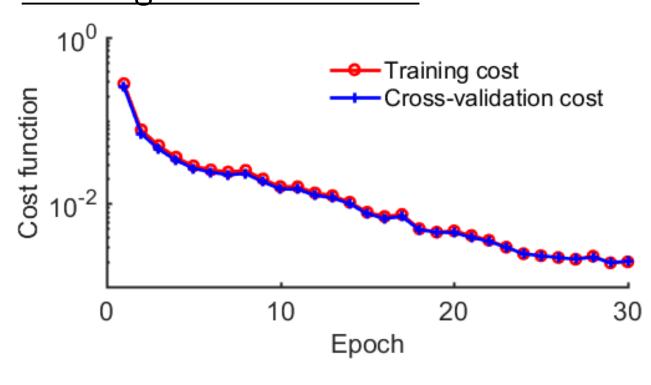
Methods

Training data generation:

- **1.** Specify reaction mechanism $(H_2 \text{ oxidation in GRI } 3.0^{[2]})$
- 2. Bounded Monte-Carlo method to generate initial conditions



- Training set size: 165,000 training examples, 300 initiations
- Breakdown: 90% train, 10% cross validation, random permutation



- Cost: $J = \frac{1}{2mK} \sum \sum$ $i=1 j=1 \lfloor \langle y_j \rangle \rfloor$
- Trained using mini-batch P-R conjugate gradient descent^[4] with backpropagation
- Model complexity insufficient to require regularization

ANN Architecture Selection

- Tested various network parameters: number of hidden layers, number of neurons per layer, cost function, and activation types
- Defined a figure of merit = $||x_{sim} x_{ANN}||$ to quantify model performance for each architecture Too complex: local minima

Figure of merit for network architectures

Number of Hidden Units per Layer								
<pre># of Layers</pre>	6	10	20	200	500	700		
2	37.3	28.8	16.0	22.6	27.8	43.2		
4	18.3	7.4	15.9	17.2	3.0	44.5		
6	28.2	2.3	27.7					
8	5.1	3.7	2.4	comput	computationally expensive			

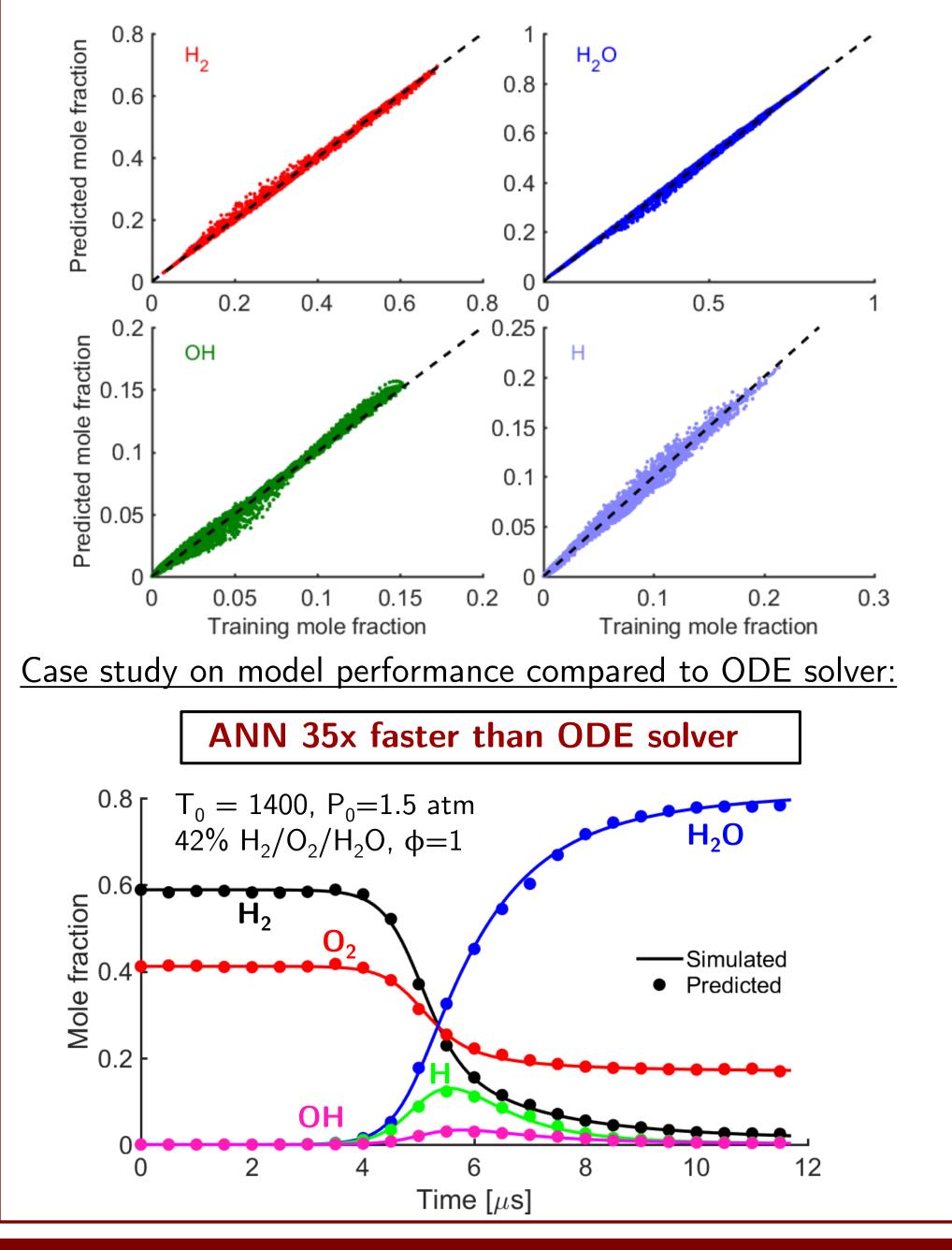
Optimal network architecture determined to be 6 layers, 10 neurons per layer, sigmoidal activation, and softmax output

Training & cost function:

Stanford ENGINEERING MECHANICAL ENGINEERING

Results

Sample comparisons between ANN and training mole fractions:



Discussion & Future Work

Discussion

- ANN prediction agrees with ODE solver for low Temp.
- Limited generalizability to unseen conditions

Future Work

- Constrained ANN parameter optimization (atom balance)
- Evaluate the computational efficiency vs. ODE solver
- [1] J.A. Blasco, N. Fueyo, C. Dopazo, J. Ballester, Combust. Flame 113 (1–2) (1998) 38–52.
- [2] G.P. Smith, D.M. Golden, M. Frenklach, N.W. Moriarty, et al., available at <http://combustion.berkeley.edu/gri-mech/version30/text30.html>.
- [3] D.G. Goodwin, H.K. Moffat, R.L. Speth, (2016).
- [4] E. Polak, G. Ribiere, Rev. Française D'informatique Rech. Opérationnelle 3 (16) (1969) 35-43.