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Background and Motivation Results

Discussion & Future Work 

Goal: Reduce computation time for time-
integrating chemical kinetics mechanisms

Problem:
Chemistry difficult 
and slow to model 
together with CFD 

Training & cost function:

If we can increase computational efficiency
then we can design more efficient engines

• Tested various network parameters: number of hidden layers, number
of neurons per layer, cost function, and activation types

• Defined a figure of merit = ||xsim – xANN|| to quantify model
performance for each architecture

Figure of merit for network architectures

Optimal network architecture determined to be 6 layers, 10
neurons per layer, sigmoidal activation, and softmax output

Training data generation:
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•Chemical kinetics: central to design of practical combustion
systems such as internal combustion and rocket engines

•Currently: computational fluid dynamics (CFD) models plus
reaction mechanism with expensive ODE solvers are used in
the design process

• Training set size: 165,000 training examples, 300 initiations
• Breakdown: 90% train, 10% cross validation, random permutation

Typical ODE-based method for implementing reactive CFD

T = Temp [K]
P = Pressure [atm]
χ = Mole fraction

H2 oxidation:
8 chemical species
20 reactions

Proposed neural network-based method

•Accurate outputs ✓
•Major problem: stiff ODEs require expensive implicit integration
• Intractable with modern mechanisms (e.g. gasoline surrogate 
1550 species + 6000 reactions)

•Replace time-integration of
mechanism with artificial
neural network (ANN)
•Computationally cheap ✓
•Approximate outputs good
enough for CFD ✓

•Tradeoff: High up-front
cost for generating training
data

Sample comparisons between ANN and training mole fractions:

Case study on model performance compared to ODE solver:

2. Use ODE solver[3]

to advance system 
to equilibrium

4.

3.Each t + Δt is 
one training and 
target example 

5.

Future WorkDiscussion

• ANN prediction agrees with
ODE solver for low Temp.

• Limited generalizability to
unseen conditions

• Constrained ANN parameter
optimization (atom balance)

• Evaluate the computational
efficiency vs. ODE solver

[1] J.A. Blasco, N. Fueyo, C. Dopazo, J. Ballester, Combust. Flame 113 (1–2) (1998) 38–52.

[2] G.P. Smith, D.M. Golden, M. Frenklach, N.W. Moriarty, et al. , available at 

<http://combustion.berkeley.edu/gri-mech/version30/text30.html>.

[3] D.G. Goodwin, H.K. Moffat, R.L. Speth, (2016).

[4] E. Polak, G. Ribiere, Rev. Française D’informatique Rech. Opérationnelle 3 (16) (1969) 35–43.

• Cost:

• Trained using mini-batch P-R
conjugate gradient descent[4]

with backpropagation
• Model complexity insufficient
to require regularization

ANN Architecture Selection

2. Specify reactor constraint 
(eg. const. UV, HP, TP)

3.

1. Specify reaction mechanism 
(H2 oxidation in GRI 3.0[2])

1. 1. Bounded Monte-Carlo method 
to generate initial conditions

2.

Too complex: 
local minima

T0 = 1400, P0=1.5 atm
42% H2/O2/H2O, ϕ=1 H2O
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ANN 35x faster than ODE solver
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