

Proactive Storage Health Management to Reduce Data Center Downtime

Motivation and Background

Motivation

• IT equipment failure is the most costly reason for data center downtime and storage components have the most frequent failing rate in current IT environments. Therefore, accurate failure prediction and timely replacement of disk drives can decrease downtime costs and improve system reliability

S.M.A.R.T

• Self-monitoring, analysis and reporting technology (SMART) is a monitoring system for disk drives, which collects and reports on various attributes related to drive reliability

Backblaze published SMART datasets collected from data center [1]

ID	Name	Attribute Description			
5	Reallocated Sectors Count	Count of reallocated sectors. a count of the bad sectors that have been found and remapped			
187	Reported Uncorrectable Errors	The count of errors that could not be recovered using hardware ECC			
193	Load Cycle Count	Count of load/unload cycles into head landing zone position			
197	Current Pending Sector Count	Count of unstable sectors. If an unstable sector is subsequently read successfully, the sector is remapped and this value is decreased			

Feature Selection

Feature Selection is Necessary

- SMART standard defines more than 90 attributes
- Even with standardization, each vendor has different attribute definitions
- Different drive models have different failure mechanisms, and hence unique sets of effective attributes

Importance of Each Features

Test Accuracy vs The number of Features

[Most recent results with data normalization]

	S.M.A.R.T P	reprocessing
Time-Series A • Redu • Obta • Aver Change Point • Dete • Assu • Find	Averaging [2] uce noise due to measure ain compact time-series re- raging with exponentially α $s_t = \alpha \times y_t + \alpha$ $\alpha = \frac{1}{2}$ Analysis ermine time span τ for aver- ume a local trend model [3 $y_t = \mu_t$ $\mu_{t+1} = \mu_t$ $\nu_{t+1} = n$ τ maximizing log-likeliho	ement and disk recovery n epresentation for SVM and decreasing weights $(1 - \alpha) \times s_{t-1}$ $\frac{2}{\tau + 1}$ eraging 3] $t + \varepsilon_t \qquad \varepsilon_t \sim N(0, \sigma_{\varepsilon}^2)$ $+ \nu_t + \xi_t \qquad \xi_t \sim N(0, \sigma_{\zeta}^2)$ $\nu_t + \zeta_t \qquad \zeta_t \sim N(0, \sigma_{\zeta}^2)$ od
	$\tau_{\max} = \operatorname{argmax}_{\tau} \log(p(y_{1:\tau}))$	$(\pi_{\tau-1} \theta_1) + \log(p(y_{\tau-1:t} \theta_2))$
W30 6000 5000 4000 2000 0 Jan.	Change point Change point Feb. Mar. Apr. May Date	W300BLNY 14000 12000 10000 4000 2000 Feb.10 Feb.20 Mar.01 Mar.10 Mar.3 Date
60	smart_197_raw = 19 days, sigma = 17 days	smart_241_ray mu = 34 days, sigma = $60^{-1}_{-10^{-1}}$ $40^{-1}_{-10^{-1}}$ $20^{-1}_{-10^{-1}}$ $20^{-10^{-1}}_{-10^{-1}}$
Nass halanci	ina	
• 201 Am • Thr	5 Backblaze data set has ong them, only 586 disk o ee methods are applied to - Random sampling of th - Cluster centroids after l - Class-weight SVM	s 29,084 Seagate ST4000 drives failed o balance healthy and faile ie same number of healthy K-means clustering of hea
	Method	Test accuracy
	Random sampling	83.0%
	K-means sampling	80.5%
	Class-weight SVM	83.0%
	Choice c	of Models
Statistical Mo	odels	
		1 1 1 1

- **Deep Learning Models**

Guanghua Shu and Ji Eun Jang {gshu, jiejang}@stanford.edu

nechanism d XGBoost

$$y_t = \mu_t + \varepsilon_t \qquad \varepsilon_t \sim N(0, \sigma)$$

$$\mu_{t+1} = \mu_t + \nu_t + \xi_t \qquad \xi_t \sim N(0, \sigma)$$

$$\nu_{t+1} = \nu_t + \zeta_t \qquad \zeta_t \sim N(0, \sigma)$$

DM000.

ed data sets v drive althy drives [2]

Linear regression (LR) and support vector machines (SVM) models are chosen as the baseline for the project

• Gradient boosting decision tree (XGBoost) is explored as classifier with input represented as compact time series after smoothing

• Recurrent neural network (RNN) is chosen for time series prediction including bidirectional LSTM cell with a hidden dimension of 12

Results Summary											
	Train Acc	Train Size	Test Acc	Test Size	Failed Disks			Healthy Disks			
					Р	R	F	Р	R	F	
LR	87.3%	940	81.0%	116	0.86	0.74	0.80	0.77	0.88	0.82	
SVM	88.5%	940	81.9%	116	0.91	0.74	0.82	0.78	0.93	0.85	
XGBoost	92.7%	940	85.3%	116	0.91	0.86	0.82	0.79	0.84	0.90	
RNN	94.6%	940	86.2%	116	0.99	0.72	0.84	0.78	0.99	0.88	

Results in the table are obtained with 18 features •

Performance is comparable among 4 models, which may suggest that there is no significant advantage of choosing one over the other for this problem The fact that all algorithms have low recall for failed disks and high recall for healthy disks suggests high false negative rate that classifies failed disks

•

as healthy (see error analysis in Discussion part)

The test accuracy of three models versus time windows for time series

Proactive prediction: the accuracy of correct prediction before failure event (proactive prediction time) suggests **RNN** may have better proactive prediction capability, since its accuracy decrease slower when proactive time goes larger

[To be updated with data normalization]

#460

