Introduction and Motivation

Question: Can we apply authorship attribution to identify writing by the general public, even with limited data?

- The rise of social media has allowed billions of people to post their views on a day-to-day basis.
- Challenges: short, informal and sparse data
- Applications: personal identity verification, forensics

Dataset and Feature Selection

Dataset:
- Dataset of pre-collected tweets: 545 politicians, around 3,200 tweets each [1]
- Cleaned and preprocessed data to remove retweets and nonstandard characters, labeled examples
- Used a subset of 6 authors for classification

Features:
- Lexical, syntactic, and semantic features:
 - Word frequency (unigram bag of words)
 - Part of speech frequency (UPenn Tagset)
 - Overall sentiment of tweet (VADER)
- Refined lexical features: removed common stop words
- Experimented to replace bag of words features with word embeddings (word2vec) in order to reduce dimensionality

Model Selection

We chose to evaluate 3 types of models:

- Naive Bayes
 - Classic authorship attribution model, used for Federalist Papers authorship. [2]
 - Multiclass multinomial classifier
- SVM
 - One-versus-rest model, generates one classifier for each author
 - Optimized using L2 regularization, tried RBF kernel for nonlinear SVM
- Neural Network
 - Fully connected feedforward network with a ReLU activation hidden layer and a final softmax output layer
 - Optimized using grid search to tune number of layers, number of units per layer, batch size, optimizer

Experiments and Results

- We tested the models above across multiple features to classify 6 authors, using a training set of 12,004 tweets and test set of 2,573 tweets. The best performance achieved by each model is summarized in the table below.

<table>
<thead>
<tr>
<th>Model</th>
<th>Features</th>
<th>Feature Vector Size</th>
<th>Training Accuracy</th>
<th>Test Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naive Bayes</td>
<td>BOW + Parts of Speech</td>
<td>26251</td>
<td>0.922</td>
<td>0.844</td>
</tr>
<tr>
<td>SVM (Linear)</td>
<td>BOW + Parts of Speech + Sentiment</td>
<td>26255</td>
<td>1.000</td>
<td>0.878</td>
</tr>
<tr>
<td>SVM (Sigmoid)</td>
<td>BOW + Parts of Speech + Sentiment</td>
<td>452</td>
<td>0.986</td>
<td>0.710</td>
</tr>
<tr>
<td>Neural Network (500, 100 neurons, ReLU)</td>
<td>BOW + Parts of Speech + Sentiment</td>
<td>25457</td>
<td>1.000</td>
<td>0.886</td>
</tr>
</tbody>
</table>

- We observed the effects of adding additional features to the various models. Sentiment was not evaluated using NB as it violates the model assumptions. Word2vec features were analyzed using SVM with a nonlinear (Gaussian) kernel and a single-hidden-layer neural network.

Analysis

Naive Bayes:
- The baseline with bag of words achieves higher than expected accuracy, although it decays with more authors.
- The model works slightly better even with additional features that are not conditionally independent.

SVM:
- Base bag of words features achieves higher training and test accuracy than Naive Bayes baseline.
- Regularization and additional features also bring up accuracy noticeably compared to Naive Bayes counterparts.

Neural Network:
- Achieves perfect training accuracy and the highest test accuracy, with just bag of words features.
- Difficulty in hyperparameter tuning (number of layers, of units, regularization): differences weren’t significant

Conclusions and Future Work

Conclusions:
- Authorship attribution model for limited text, evaluated on Twitter messages, achieves over 85% categorical accuracy using Naive Bayes, Linear SVM, and feedforward neural network approaches, with up to 6 authors.
- Bag of words features set a reasonable baseline. Additional standard NLP syntactic and semantic features (part of speech, overall sentiment) slightly help accuracy for Naive Bayes and SVM (but not neural networks).
- Word embeddings decrease accuracy.
- More powerful models (neural networks) do perform better, but not outstandingly so.

Future Work:
- Additional model hyperparameter tuning (regularization, network architecture) to improve accuracy using word2vec
- More semantic processing: handle negations and phrases
- Evaluate the effect of the number of authors on performance

References

3. Adapted from https://sites.google.com/site/mrsavrovstechclassroom/hl and Linguistic Computing[Accessed 11 Dec. 2017]. Available at: https://www.reddit.com/r/datasets/comments/6fniik/over_one_million_tweets_collected_from_uspoliticians
5. Adapted from: https://sites.google.com/site/mrsavrovstechclassroom/hl and Linguistic Computing.