Playing DOOM using Deep Reinforcement Learning

{tdhoot, danikhan, bkonyi}@stanford.edu

Problem Statement

Teach agent to perform well in various scenarios in the video game classic, DOOM.

Maximize rewards in our training scenarios using only state that would be available to a human player (images, items, health)

Training the agent to perform well at “seek-and-destroy” and “health gathering” scenarios.

Network Variations

Double DQN: Split action selection network and evaluation selection to reduce overestimation:

\[Y^{\text{DoubleDQN}}_t = R_s + \gamma \hat{Q}(S_{t+1}, \arg \max_a Q(S_{t+1}, a, \theta'), \theta') \]

Dueling DQN: Split the network into 2 streams: value function for state \(S \), \(V(S) \) and advantage function for each action \(a \) in state \(S \) \(A(S, a) \)

\[Q(s, a, \alpha, \beta) = \beta Q(s; \phi) + \alpha A(s; \theta; a) - \frac{1}{|A|} \sum_a A(s, a'; \theta, \alpha) \]

Multi-Frame States: State consists of four frames instead of a single frame. This captures movement in time.

Dataset, Features & Training

The data that was used to train our DQN raw pixel data, game state that would be readily available to a human player (current ammunition count, health).

Frame Size: 640 x 480 scaled to down to 160 x 120 (RGB & gray scale)

Reward shaping: Encouraged movement by giving rewards based on distance moved

\[\text{Loss} = (Q(s, a) - (r + \gamma \max_a Q(s, a)))^2 \]

Results

After each training epoch (max 50), we did a validation run (deterministic policy using trained DQN).

The DQN performed very well on seek & destroy, approaching >60 validation reward (quickly killing the monster, +99 pts)

Results were mixed overall, for health gathering (reward shaping improved performance a bit) double dueling performed the best, large variation with reward shaping.

Training loss converged quickly (after a few epochs) but converged in half the time with dueling network.

Discussion

Before each training epoch (max 50), we did a validation run (deterministic policy using trained DQN).

The DQN performed very well on seek & destroy, approaching >60 validation reward (quickly killing the monster, +99 pts)

Results were mixed overall, for health gathering (reward shaping improved performance a bit) double dueling performed the best, large variation with reward shaping.

Training loss converged quickly (after a few epochs) but converged in half the time with dueling network.

DQN Architecture

First convolutional layer: 32 filters, 7x7 kernel, stride of 1, ReLU

Second convolutional layer: 32 filters, 5x5 kernel, stride of 1, ReLU

Max-pooling: 2x2 window, stride of 2 (on both convolutional layers)

First fully connected layer: 1024 output units and had 38,400 inputs from our processed images, in addition to our scalar states.

Second fully connected layer: 512 output units

Linear output layer: one output per valid action

References

[1] Deep Reinforcement Learning with Double Q-learning

