Motivation

Machine learning is often used in engineering for design
optimization or to build surrogate models for computationally
expensive engineering simulations. These applications typically
involve small numbers of prespecified parameters and fail to
capture higher level intuition of experienced engineers.

By including plots and images into the machine learning model,
optionally ranked or classified by an engineer, we can attempt to
capture more subtle engineering intution in a more intuitive
manor than traditional methods.

In this project we build a variational autoencoder(1] to model
transonic airflow characteristics on a NASA Rotor 37
compressor blade(2] in response to changing

inlet massflow conditions.

Once the trained model is built, the flow field at new
conditions can then be sampled from the posterior
distribution of the latent variables given constraints ¢
on the latent manifold.

Dataset

The dataset for this project is generated via a numerical simulation
technique known as computational fluid dynamics (CFD) which
simulates the flow field around the rotating blade. The set of data
points is generated using Latin Hypercube Sampling [3] across a
range of inlet mass flow boundary conditions.

From each simulation we extract an 84 x 25 x 3 (pixels) colour image
showing relative mach number contours at mid span. To form the
input vector for the VAE model, we flatten the image pixels and
add the corresponding mass flow condition for that point. For this
project, the samples are not classified and thus the learning
problem is unsupervised.

Figure 1. Example dataset images showing relative mach at mid span
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Variational autoencoders consist of an encoding-decoding pair
of neural networks. The encoder takes the input and computes
the mean and variance of a latent gaussian distribution. The
decoder receives a sampled value from the latent space and
generates the mean and variance of the output(1].
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The objective function of the VAE maximizes the
reconstructive likelithood subject to regularization by the KL
divergence of the latent space with respect to a unit gaussian
distribution [1].
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Figure 6. VAE network architecture

Discussion

In general, the model was fairly successtul in encoding a latent
distribution to capture the two primary flow states modeled.
A well performing model should output similar SSIM values
across datasets. Note that values near 100% would indicate
poor generalization and are not necessarily desired. In early
error analysis, the largest issue identified was overfitting. This
is evident in early latent space models (figure 4) and can be
seen plotting SSIM against dataset size (figure 5). To address
this, a dropout layer was added to the encoder, the image size
reduced, and the datasize increased by 3600 images.
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Figure 4. Latent space without dropout  Figure 5. Test/Train SSIM by dataset size

To estimate the reconstructive performance of the model we use the image structural
similarity (SSIM) [6]. Table 1 illustrates the SSIM scores for the training, development, and
test sets. Figure 3 shows the test samples encoded into the 2D latent space and the
distribution of the latent variables. In this figure we can see two distinct states emerging
corresponding to the dominant shock wave positions in the dataset. In figure 2, we show

resulting images if sampled from the corresponding region of the latent space.

Table 1. Reconstructive Similarity (SSIM )

Training Set (4129 samples) 90.5 %
Development Set (498 samples) 2.2%
Test/Validation Set (245 samples) 90.3 %

Figure 2. Latent space visualization

Future Work

The most advantageous future work involves

addressing the overfitting and dataset bias

issues. These can be improved immediately

through expanding the dataset size,
particularly in the swallowed shock state

where CFD convergence issues reduce the

overall sample yield. The use of convolutiona

layers may also improve the generalization
capability [5].

There are also many other exciting
applications within the aerospace field
including the variation of geometric blade
parameters or other boundary conditions.
Exploring the capability of latent space
arithmetic may also open new ways to use
such models in design optimization tasks.
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Figure 3. Encoded test samples in latent space
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