
Social Network Circle Discovery Using Latent Dirichlet Allocation

Frank Fan
Stanford University

Department of Mathematical
and Computational Science
ffan9@stanford.edu

Jaimie Xie
Stanford University

Department of
Computer Science

jaimiex@stanford.edu

Matthew Kim
Stanford University

Department of
Computer Science

mdkim@stanford.edu

Abstract

Online Social Networks, such as Face-
book, provide a great interface for con-
necting with others, whether they are ac-
quaintances or close friends. However,
there is no distinction made between dif-
ferent social circles, or clusters of friends
who share some common feature(s). In
this paper, we explore ways to apply La-
tent Dirichlet Allocation (LDA), an unsu-
pervised learning algorithm traditionally
used for topic detection in textual cor-
pora, to automatically detect social circles
among a subject’s friends. For each friend,
which we will consider as documents, we
take in account both the profile features
and users’ friends, comparable to word
”tokens.” Finally, we will analyze our re-
sults by finding the cost-minimizing as-
signment from our circles to the ground-
truth circles, based on the Balanced Error
Rate (BER).

1 Introduction

As of August 2015, Facebook, an immensely pop-
ular online social networking service, had over
1.59 billion monthly active users. The site allows
users to create a user profile and add other users as
”friends.” Users can then categorize their friends
into lists, such as ”Close Friends,” or ”People
From Work.” However, with the average Facebook
user having about 338 friends, manually picking
out these friend circles becomes a laborious pro-
cess. The purpose of our experiment is to explore
algorithms that can automatically detect these cir-
cles, so that users can more easily personalize to
whom they share their information. For example, a
user would most likely not want to share the same
information with acquaintances than with family
members.

Figure 1: Graphical interpretation of an ego network. The
large, red node signifies the ego node. The alters are colored
according to the ground-truth circles they were placed in.

In order to detect these circles, we will consider
three sources of information: the user’s profile fea-
tures, the user’s friends’ features, and the network
structure. In general, we want the friends in each
circle to share certain common features (such as
same school, same work, etc.), and also have many
common friends within the circle. (Connectivity
within a circle can also provide information on
which groups are more casual and which are more
tight knit.)

Finally, we should also consider the possibility
of friends belonging in multiple circles. For ex-
ample, someone who went to the user’s university
could also be a coworker. Therefore, our prob-
lem at hand is not a traditional clustering problem,
where each example falls in one cluster. We will
address the multi-cluster problem by using an al-
gorithm that determines a multinomial distribution
of the circles for each of the users’ friends. We will
explain this algorithm in more detail in the latter
sections.



2 Background

This section gives background information on the
methods that have been explored to solve the task
of Social Circle Discovery. We will then discuss
Latent Dirichlet Allocation, which is a method
from Natural Language Processing that we will
apply to our task.

2.1 Related Work
McAuley and Leskovec (2012) developed a novel
method that builds a probabilistic model of an ego
graph based on connectivity between nodes, and
the circles that exist among the nodes. The circles
are treated as a latent variable in the optimization
of the likelihood of the graph. Petkos et al. (2015)
used Latent Dirichlet Allocation in social circle
discovery, but only used individual user-features
and id’s of neighbors in model training.

2.2 Latent Dirichlet Allocation (LDA)
For social circle discovery, we turn to Latent
Dirichlet Allocation (LDA), originally devised by
Blei et al. (2003) for topic modeling in Natural
Language Processing. This involves treating users
in a network as ”documents,” and user features as
”words.” The primary hope is to produce a mix-
ture model of social circles for each user, based on
their features: birthday, workplace, etc. Not only
is this an intuitive extension of the field of linguis-
tic topic-modeling, LDA proves to be a more time-
efficient algorithm than traditional methods, while
achieving comparable results (Petkos et al. 2015).

LDA is a generative algorithm that views docu-
ments as mixtures of topics, with each topic being
a multinomial distribution of words. LDA models
the production of each document in a corpus in the
following fashion:

1. Produce an N ∼ Poisson(η), the length of the
document.

2. Produce a θ ∼ Dirichlet(α). θ represents the
distribution of topics within a document.

3. For each word wi in the document,

(a) produce a topic zi ∼Multinomial(θ).
(b) produce word wi ∼Multinomial(zn, β)

From this model, we can formulate the proba-
bility of a document, w:

p(w|α, β) =
Γ
∑
i αi∏

i Γ(αi)
×

∫ ( k∏
i=1

θi
αi−1

) N∏
n=1

k∑
i=1

V∏
j=1

(θiβij)
wj

n

 dθ
Since this formulation produces a log-

likelihood maximization problem that is in-
tractable, Blei et al. (2003) propose an EM
procedure for learning the model parameters.

Furthermore, in line with work done by Hoff-
man et al. (2010) and Rahurek and Sojka (2010),
we utilize an online-learning variant of LDA for
this project.

3 Experiment

In the previous section we discussed the LDA
method, which we will now apply to the problem
of social circle discovery. This involves modeling
the user’s friends as ”documents,” features as
”words,” and social circles as ”topics” in the
documents. The features we used not only
included individual friends’ features (birthday,
workplace, etc.), but also the id’s of each user’s
friends to capture some sense of the connectivity
of the graph. We also added features which each
friend shares with the user/ego node. Concretely,
for each friend ”document,” we have the feature
labels for each exhibited feature on his/her profile,
the feature labels for each feature he/she shares
with the user-node, and the user IDs of all the
friends that he/she is connected to by an edge.

To evaluate the performance of our LDA
algorithm, we also ran two variants of K-means
clustering, using just the feature vectors of the
friends’ profiles. However, since in many cases,
the feature dimensions exceeded the number of
friends, we compressed the feature vectors using
tSVD (See Section: 3.2).
To summarize, we ran the following algorithms:

• LDA using the network structure, user’s pro-
file, and friends’ profiles. We set the number
of circles, k = the number of ground-truth
circles. We will refer to this algorithm as
”LDA”

• LDA as above, except we set k using the
AICC selection algorithm described in sec-
tion 3.1. This will be ”LDA+C”

• K-means clustering using only the com-
pressed feature vectors of the user’s friends.
We set k = the number of ground-truth



circles. We will refer to this algorithm as
”KMEANS”

• K-means as above, except we set k using the
AICC selection algorithm described below.
This will be ”KMEANS+C”

3.1 Parameter Tuning
With the LDA algorithm, it is vital to pick the
number of topics, which we will denote by K, to
model. We accomplish this with a stepwise pro-
cedure through a grid search of varying values of
K, to choose the model that minimizes the AICc
(Petkos et al. 2015):

AICc = −2LL+ 2p+
2p(p+ 1)

N − p− 1

Where LL is the log-likelihood of the model
with respect to the dataset, N is the total num-
ber of words across all documents (total number
of features summed across all users) and p =
K(M − 1) + D(K − 1) is the effective number
of parameters, with K being the number of top-
ics (circles), M the number of distinct words (fea-
tures) and D the number of documents (users).

To obtain the log-likelihood of a model, we
utilized the perplexity measure produced by the
online-LDA and used the following formula re-
lating perplexity and log-likelihood (Blei et al.
2003):

Perplexity(C) = exp(
−LL(C)

N
)

with C representing all the documents in a corpus
(i.e., all users in a network).

The traditional AIC criterion helps to choose
the model with the greatest likelihood, while pe-
nalizing models with large numbers of parameters
(which mitigates over-fitting). The AICc crite-
rion, however, also corrects for finite sample sizes
that are small with respect to the dimension of the
parameter space (Hurvich and Tsai 1989). We see,
also, that as the number of words N in the cor-
pus increases without bound, the third term of the
AICc drops out and we are left with the formula
for AIC.

3.2 Baseline Comparison
To set a baseline comparison, we decided to use
K-Means clustering, which is capable of assigning
each user to only one circle, so is expected to be
less robust than our LDA algorithm.

Figure 2: The number of circles predicted may not always
correlate with the ground-truth number of circles.

To pre-process the data before K-Means cluster-
ing, we used the truncated SVD method (Berry et
al. 1995). Whereas most implementations of the
tSVD require one to specify the number of eigen-
values to keep, We use our own tSVD implemen-
tation, adapted with a rule proposed by Leskovec
et al. 2014, which allows us to avoid human-
inspection of the SVD eigenvalues (for a drop-off),
and to avoid hard-coding the number of eigenval-
ues to keep:

• With our data matrix, with rows represent-
ing users and columns representing the fea-
ture values for each user, we formed the SVD
(UΣV ∗)

• By a rule of thumb (Leskovec et al. 2014),
we truncated the maximum number of eigen-
values such that: the sum of squared remain-
ing eigenvalues is at least .9 of the sum of
squared original eigenvalues. This allows us
to capture a good amount of the variation
in the data, while reducing uninformative di-
mensions.

• Let’s say we truncated the SVD to the m
largest eigenvalues. Our tSVD is then de-
noted by: UmΣmV

∗
m. To form the dimension-

reduced dataset, we simply take UmΣm.

3.3 Data
The data that we will use for training/testing
is provided by the Stanford Network Analysis
Project, and all of our data comes from Facebook.
The data is divided into ego networks, which
consists of the ego node, all of the nodes it is
connected to (called alters), and all of the edges
there may be among these nodes. Within each ego
network, we have the following:



Figure 3: The average BER Scores across the four algo-
rithms that were tested. BER scores are obtained by subtract-
ing the average BER error from 1, so a higher score means
better performance.

• Circles: these are the circles that the user
manually chose, the ground-truth circle. The
circles are not necessarily disjoint, so one
user can be in multiple circles. We will com-
pare our results with these sets of users.

• Edges: this contains every edge in the ego
network, other than the implicit edges that
connect each alter to the ego node. An edge,
(n1, n2) signifies that alters n1 and n2 are
”friends” on Facebook.

• Features: for each alter, we are given a bi-
nary array, where a 1 in index i signifies that
feature i is satisfied (and 0 otherwise). The
features are constructed in a tree-structure,
where example features include:

– education:university:Stanford
– education:university:Harvard
– education:year:2018, etc.

• Feature names: this contains the names of the
features that correspond with the feature ar-
rays. In general, we will just use the numeri-
cal labeling of the features.

3.4 Results/Analysis

After running the LDA Algorithm, we get the
multinomial distributions of the circles for each of
the friends in the ego-network. At this point, we
can choose a cut-off probability to choose which
circles each user actually should be assigned to.
For example, if a user is assigned a probability
< .05 of being in circle A, then this user is likely
not actually in circle A. In choosing this cut-off

probability, we have to consider how many circles
we are actually predicting. Let N be the number
of circles we predicted, then we will place user u
in circle C if Pr(u ∈ C) > 1/N

In our K-Means Algorithm, each user was auto-
matically labeled into one circle.

Once we have established these circles, we want
to be able to directly compare the automatically
produced circles with the Ground-truth circles,
which are the circles that the ego-user manually
chose. To do this, we must determine an optimal
mapping from our circles to the circles which the
ego-user hand-picked. First, we need to determine
some error/cost function which we would like to
minimize. For the purpose of our experiment, we
used the Balanced Error Rate (BER), as did Petkos
et al (2015). If we let C = {C1, C2, ..., CK}
be the set of automatically produced circles, and
C̄ = {C̄1, C̄2, ..., C̄K} be the set of ground-truth
circles. Then, we can define the BER as:

BER(Ci, C̄i) =
1

2

(
|C̄i\Ci|
|C̄i|

+
|C̄ic\Cci |
|C̄ic|

)
The BER cost function equally weights the frac-
tion false-positives and false-negatives. If we
compute the BER for every pair (Ci, C̄j), we can
construct the cost matrix where the ij − th entry
is BER(Ci, C̄j). (Note that since the number of
circles which we predicted does not always match
the number of truth-circles, our cost matrix is not
always a square-matrix. The number of matchings
that we will get in this case will be min(|C|, |C̄|))

We want to find a circle matching f : C → C̄,
which gives us the least total error. If we were
to try every possible f and then compute the cost,
this would take O(n!). However, with the Kuhn-
Munkres algorithm, we can solve the assignment
problem in O(n3) time.

For our final BER score, we take the average of
the BER rates from each circle assignment, then
subtract that from one:

BERf =
1

|f |
∑

C∈dom(f)

(1−BER(C, f(C)))

For each algorithm we average the BERf values
from each of the 10 ego-networks. We get the fol-
lowing results: KMEANS reports a BER score of
.652, KMEANS+C obtains a score of .701, LDA
a score of .622, and LDA+C a score of .657.

For both our K-means and LDA algorithms, we
achieved better results when we predict the num-
ber of circles using AICC , rather than just setting



k = the number of ground-truth circles. This is
because in the latter case, we are overfitting the
data - in one of the networks (for LDA), using our
predicted number of circles (k = 5 rather than
k = 46) improved the BER score from .632 to
.851. Many of the ground truth circles only con-
tained 1-2 people, and by abstracting away these
circles, we actually got better results.

Another surprising result was that the K-Means
algorithms, which used only the feature vectors of
the user’s friends, but did not consider the net-
work structure or user’s own profile features, did
better than the LDA algorithms, which considered
all three components. However, our implementa-
tion of the LDA algorithm places larger weight on
the network structure because most of the user’s
friends have many more connections within the
ego-network than 1s in their feature vectors. Since
we are treating each connection as a word in the
documents (the user’s friends), the documents will
largely be composed of network structure. This
implies that profile features (even using the com-
pressed vectors) may tell us more about circle for-
mations.

Figure 4: LDA performs better for most trials when we pre-
dict the number of circles using AICC selection, rather than
using the number of ground-truth circles.

4 Future Work

We hope to explore other combinations of fea-
tures to include in our LDA model, such as in-
teraction terms and indicators of edge strength.
We also hope to devise ways to factor network-
connectivity into our model-building without hav-
ing it overwhelm the other features present. An-
other area of work would be to explore parameter
tuning with BIC and AIC and compare results
with AICc selection to verify our theoretical deci-
sion to use AICc.

References
Berry, M. W., Dumais, S. T., and O’Brien, G. W. 1995.

Using linear algebra for intelligent information re-
trieval SIAM review, 37(4), 573-595.

C. Hurvich and C. Tsai, 1989. Regression and time
series model selection in small samples. Biometrika,
76, 297307, 1989.

David M. Blei, Andrew Y. Ng, Michael I. Jordan.
2003. Latent Dirichlet Allocation. Journal of Ma-
chine Learning Research, 3:993-1022.

Matthew D. Hoffman, David M. Blei, and Francis
Bach. 2010. Online Learning for Latent Dirichlet
Allocation. Advances in Neural Information Pro-
cessing Systems 23 (NIPS 2010).

Julian McAuley and Jure Leskovec. Learning to dis-
cover social circles in ego networks. Proc.c of NIPS.

Leskovec, J., Rajaraman, A., and Ullman, J. D. Mining
of Massive Datasets. Cambridge University Press.
2014.

Pedregosa et al. Scikit-learn: Machine Learning in
Python JMLR 12, pp. 2825-2830, 2011.

Georgios Petkos, Symeon Papadopoulos, and Yian-
nis Kompatsiaris. 2015. Social Circle Discov-
ery in Ego-Networks by Mining the Latent Struc-
ture of User Connections and Profile Attributes.
IEEE/ACM International Conference on Advances
in Social Networks Analysis and Mining.

Radim Rahurek and Petr Sojka. 2010. Software
Framework for Topic Modelling with Large Cor-
pora. ELRA.


