
Deep Reinforcement Learning for Atari games aided with human
guidance

kshitiz@stanford.edu

Abstract— Apply Deep Reinforcement Learning techniques
to train an agent to play Atari games in a generic manner and
develop approach to let the agent be taught/guided by a human
teacher.

I. INTRODUCTION

There is a growing trend of combining deep neural net-
work with reinforcement learning to solve problem with high
dimensional space state. The Atari 2600 games provides
an excellent simulation environment to train and test such
generic RL algorithms. Previously these problems were dealt
by extracting handcrafted feature sets and the performance
of such system relied on the quality of feature representation.

This projects focuses on studying and implementing one
of the current techniques in Reinforcement Learning, which
is Policy Gradient to let an AI agent automatically learn to
play Atari games. The second step would be to come up with
an approach to let the agent be taught/guided by a human
teacher to help it discover strategies that involves multiple
steps.

II. RELATED WORK

The ralated work in this area is primarily done by Google
Deepmind. Minh et al. initially solved the problem using a
off policy method by training a deep Q network to evaluate
the Q-function for Q-learning(Mnih et al., 2013[1]). They
later presented Asynchronous Advantage Actor- Critic(A3C)
algorithm(Mnih et al., 2013,[2]) which is a type of Policy
Gradient method to solve the same problem with significant
reduction in training time. Although Policy gradient algo-
rithms have been part of Reinforcement learning coursework
for a long time, but their implementation with deep neural
network is definitely state of the art.

III. BACKGROUND

A. Reinforcement Learning

We consider the standard reinforcement learning setting
where an agent interacts with an environment E over a
number of discrete time steps. At each time step t, the agent
receives a state st and selects an action at from some set
of possible actions A according to its policy π, where π is
a mapping from states st to actions at. In return, the agent
receives the next state st+1 and receives a scalar reward rt.
The process continues until the agent reaches a terminal state
after which the process restarts. The return

Rt =

∞∑
k=0

γkrt+k (1)

is the total accumulated reward from time step t with
discount factor γ ∈ (0; 1] which takes care of the
credit assignment problem. The goal of the agent is to
maximize the expected return from each state st.

Action value Qπ(s; a) = E[Rt|st = s, a] is the expected
return for selecting action a in state s and following policy π.
The optimal value function Q∗(s, a) = maxπQπ(s, a) gives
the maximum action value for state s and action a achievable
by any policy. Similarly, the value of state s under policy
is defined as vπ(s) = E [Rt|st = s] and is simply the
expected return for following policy from state st.

B. Policy Gradient

Policy gradient(PG) is a policy-based method that directly
learns a parameterized policy π(a|s; θ) without consulting
the action value function,Qπ . Note that some policy gradient
method like Action-critic still uses value function to estimate
policy weights, θ, but value function is not required for
action selection. For discrete action space, like in the case of
games, the natural choice of parametrization is parametrized
numerical preferences, h(s, a, θ) ∈ R for each state action
pair and policy function is expressed as exponential softmax
distribution:

π(a|s; θ) = exp(h(s, a, θ))∑
b∈A exp(h(s, b, θ))

(2)

During learning phase, sampling over the above
probability distribution elegantly solves the
exploration-exploitation dilemma. Action value
paramterization method like DQN(Mnih et al., 2013,[1])
generally uses a ε-greedy exploration approach - with
probability ε choose a random action, otherwise go with
the greedy action with the highest Q-value. This means
that policy parametrization method allows the possibility
of approaching determinism (action preference, h(s, a, θ),
for optimal action becoming infinitely higher than other
actions.) while in action value method there is always an
ε probability of choosing random action. Other advantages
of policy gradient includes policy function being simple to
approximate compared to action value function and policy
parametrization is sometimes a good way of injecting prior
knowledge about the desired form of the policy into the
reinforcement learning system.

The action preference, h(s, a, θ), is computed by deep
neural network where θ is the vector of all connection
weights of the network. The θ vector is updated using
backpropogation starting with policy gradients computed
using algorithm mentioned below.



C. REINFORCE: Monte Carlo Policy Gradient

TABLE I: REINFORCE: Monte Carlo Policy Gradient Al-
gorithm

Algorithm: REINFORCE
Input: a differentiable policy parameterization π(a|s; θ), ∀a ∈ A, s ∈ S
Initialize policy weights θ
repeat until terminated:

Using π(a|s,θ), generate episode s0, a0, r1, s1, a1, ...aT−1, rT
repeat for each step of the episode t = 0,1,...T-1:

Rt ← discounted reward from step t
θ ← θ + αRt 5θ logπ(at|st,θ)

end
end

Policy gradient maximizes the value function(expected
return) of the starting state, η(θ) = vπθ(s0) with respect
to the policy weights, θ. Using the policy gradient theorem,
the REINFORCE(Williams J,[3],Sutton et al. [4]) algorithm
gives the policy gradients, 5θη(θ). The stochastic gradient
ascent follows: :

5θη(θ) = Rt 5θ logπ(at|st,θ) (3)
θt+1 ← θt + α5θ η(θ) (4)

The algorithm is summarized in Table I. Appendix A com-
putes the derivative of a softmax function a simple action
preference, h(s, a, θ), linear in feature.

D. Human Guidance

Advance video games involve strategies involving multiple
steps. For example, in Mario, in order to get 1up, the
agent has to first hit the brick hiding 1up and subsequently
catch it. A simpler example is the tunneling strategy in
breakout(Figure 1). Humans have high level abstract model
enabling them to quickly figure out what is likely to give
reward without ever actually experiencing it. Therefore hu-
man guidance can play an important role in such scenarios.
There are two ways to achieve this:
• Inject a policy consisting of these complicated strate-

gies. This policy can be computed using supervised
learning based on sample of game episode collected
from a human player.

• Reward shaping: Modifying the reward function so
that it captures these strategies.

Fig. 1: Tunneling strategy in Breakout. The bricks of one of
the sides are depleted quickly letting the ball reach the top
and collect bricks rapidly.

As described in section IV later, we will test different
reward function to train the agent to make it play the
tunneling strategy in breakout.

E. Open AI Gym

We used OpenAI Gym (Brockman et al., 2016[5]) for
simulating Atari environment. It is a toolkit for developing
and comparing reinforcement learning algorithms. It supports
teaching agents everything from walking to playing games
Gaming from Pixels like Pong or Breakout.

IV. EXPERIMENTS

(a) Pong (b) Breakout

Fig. 2: Atari Games used in my training.

Training was done for 2 of the ATARI games:
Pong and Breakout(Figure 2). The input was an image
frame(210X160X3 byte array giving pixel values(0-255)).
The action space consisted of 3 actions for both the games:
move paddle up, move paddle down and no-op for Pong.
Move paddle left, move paddle right and no-op/start-game
for Breakout. For Pong, a reward of +1 was obtained when
the ball went past the opponent, -1 if the agent misses the
ball and 0 otherwise. For breakout, on every brick removal,
+1 was received and 0 otherwise. So a Pong episode score
ranges between [-21, +21] and for Breakout its 0 or more.

A. Model Architecture

The policy function approximator is a simple feed forward
neural network as shown in Figure 3. The input to the
network is the difference of two successive image frame
received from game environment. Differnce is taken to cap-
ture the movement of objects which would have been missed
otherwise. The hidden layer uses Relu as the activation
function. And the output layer is followed by a softmax
function.

B. Optimization

Stochastic gradient ascent with Standard non-centered
RMSProp (Tieleman & Hinton, 2012) is used for annealing
the learning rate. The update is given by:

g = λg + (1− λ)4 θ2 (5)

θ ← θ + α
4θ√
g + ε

(6)

where, λ is the decay rate.



Fig. 3: Policy Network with 2 layers Fully Connected Net.

The input image frames were downsampled to 80 X 80
gray-scale for thinner network.(Image - Cropping was game
specific)

C. Discounted Reward Function

For pong we had a single reward function where all the
action leading to point(±1) were only attributed with that
point with a discount factor γ = 0.99.

For Breakout, we tested with following 3 reward strategies:
• Reward 1: Only the actions between scoring two

consecutive non-zero points, rta and rtb were
attributed with point rtb (discounted).

• Reward 2: All the actions before scoring non-zero
point rt were attributed with rt

• Reward 3: All the actions between scoring the non-zero
points rta and rtb (not necessarily consecutive) were
attributed with all the points scored between (ta, tb]
such that there is only one paddle hit event between
ta and tc and no paddle hit event between tc and tb,
where rtc is the first non-zero point scored after scoring
rta .

The Reward 3 function is expected to favor the tunneling
strategy as compared to Reward 1,2. Also, Reward 1,3
are expected to have better optimal score as Reward 2 is
attributing the scores to action that are not involved in
generating them.

D. Training

The training was done with policy parameter updated in
a minibatch of 10 episodes. Both the games were trained
with exactly same hyperparameters as shown in Table II.
The hidden layer consisted of 1000 neurons.

TABLE II: Hyperparameters

parameters Value
Hidden layer Neurons 1000
Learning Rate 0.5e-3
Discount Factor 0.99
Optimizer RMSProp
RMSProp Decay Rate 0.95
Update Batch Size 10

V. RESULTS

Agents were successfully trained to play Pong and Break-
out. The learning curves are shown in Figure 4-5. The test
results are summarized in table III.

Figure 6 shows the comparision between the three reward
functions of breakout describe above. As expected Reward
1 and 3 performed better than Reward 2 but Reward 3 did
not yet drive the agent to learn tunneling strategy.

Fig. 4: Pong Learning Curve. The blue lines are episode
scores. Red line is the running mean. Running mean after
60000 iteration = 11

Fig. 5: Breakout Learning Curve. The blue lines are episode
scores(Max = 405!). Red line is the running mean. Running
mean after 350000 iteration = 27

VI. CONCLUSIONS

We were successfully able to train agents matching human
level performance for pong and breakout. The reward shaping



TABLE III: Test Results

Game Random Play Human Policy Gradient
Pong -20.8 5.25 8.9±4.12

Breakout 1.3 33.5 25.5±6.4

Fig. 6: Reward Function Comparison for Breakout.

experiment was unsuccessful in driving the agent to learn
tunneling strategy in Breakout.

APPENDIX

A. Softmax cost function and its gradient

gθ(x) =


p(y = 1|x; θ)
p(y = 2|x; θ)

...
p(y = K|x; θ)

 =
1∑K

j=1 exp(θ
(j)Tx)


exp(θ(1)Tx)
exp(θ(2)Tx)

...
exp(θ(K)Tx)


The cost function is given by,

J(θ) = −
m∑
i=1

K∑
k=1

1
{
y(i) = k

}
log

exp(θ(1)Tx(i))∑K
j=1 exp(θ

(j)Tx(i))

And the gradient is given by,

5θ(k)J(θ) = −
m∑
i=1

[x(i)(1
{
y(i) = k

}
− exp(θ(1)Tx(i))∑K

j=1 exp(θ
(j)Tx(i))

)]

ACKNOWLEDGMENT

REFERENCES

[1] Volodymyr Mnih and Koray Kavukcuoglu and David Silver and Alex
Graves and Ioannis Antonoglou and Daan Wierstra and Martin A.
Riedmiller, Playing Atari with Deep Reinforcement Learning, 2013

[2] Volodymyr Mnih and Adri Puigdomnech Badia and Mehdi Mirza and
Alex Graves and Timothy P. Lillicrap and Tim Harley and David
Silver and Koray Kavukcuoglu, Asynchronous Methods for Deep
Reinforcement Learning, 2016

[3] Ronald J. Williams, Simple Statistical Gradient-Following Algorithms
for Connectionist Reinforcement Learning, 1992.

[4] Richard S Sutton and ANdrew G. Barto, Reinforcement Learning: An
Introduction, 2016

[5] Brockman, Greg, Cheung, Vicki, Pettersson, Ludwig, Schnei-
der, Jonas, Schulman, John, Tang, Jie, and Zaremba, Wojciech
https://openai.com/blog/, 2016

[6] Andrej Karpathy, http://karpathy.github.io/2016/05/31/rl/, 2016


