
DART : Deep learning for ART

Maxime Dumonal Yuze He Prasad Kawthekar
mdumonal@stanford.edu yuzehe@stanford.edu pkawthek@stanford.edu

1 Introduction
Art world places a significant value on the “brand” of artists behind art pieces [1]. This incentivizes art
forgeries, wherein forgers attempt to imitate famous artists and sell the forgeries for large sums of money to
museums and private art collectors. For instance, Han van Meegeren, a failed Dutch painter began forging
famous painters such as 17th century artist Vermeer in early 20th century and sold forgeries worth $30
million before being caught [2]. The inability to catch art forgeries increases the risk of investment in art by
art collectors, which in turn impacts preservation of art from an art history perspective.

We investigate the use of automated art forgery detection using deep supervised learning. During
the training phase, the computational model learns to detect painter-specific features given digital copies of
paintings and the corresponding painter labels. Then during evaluation, these models can then be used to
discriminate whether two paintings are by the same painter or not. We test three different methods for this
task that make use of deep convolutional neural networks for extracting painter-specific features from
paintings, followed by evaluation on a reasonably sized dataset, and discussion of results and challenges
therein.

2 Related Work
A wide variety of methods have been developed for visual art forgery detection. This includes physical
methods such as carbon dating to detect anachronistic elements in forgeries, and X-ray diffraction
techniques for pigment chemical analysis [3]. However, these methods require significant time and cost
overhead and thus are difficult to scale. We refer the reader to [4] for a review of other physical methods for
art forgery detection.

Recently, digital techniques have also been applied to classify digital images of paintings. Lombardi
[5] used low level features of images such as texture, shadows, edges etc. to classify a small set of
paintings into different styles and genres. Much work has also gone into designing features that incorporate
brushwork analysis and then using these features to classify paintings into different styles [6]. Other
image-level features such as SIFT have also been used for painting analysis, for instance in [7]. Our work is
most closely related to the work in [10], which presented a convolutional neural network pre-trained for
image categorization. It is also directly motivated by the work of [11, 12], in which the authors use a metric
learning approach for painting classification. The interested reader is referred to [8, 9] for a comprehensive
literature review of other similar techniques. To the best of our knowledge, few of the techniques applied for
painting classification have relied on automatic featurization of paintings. Our intuition is that a deep learning
method such as convolutional neural nets should be able to do this automatically and thus reduce the
overhead required by developing domain specific features.

3 Dataset and Preprocessing
We obtain a supervised dataset of +80,000 paintings across a variety of genres, time periods and artists
from Kaggle [13]. Most of the images of paintings in this dataset are originally taken from Visual Art
Encyclopedia [14], while some others are obtained from contributions by artists to Kaggle. We select a
subset from this original dataset by retaining all paintings corresponding to 100 random painters from the
1584 painters in the dataset. This subset contains 3529 total paintings, which we split into a train set of
2852 paintings (~80%), valid set of 318 paintings (~10%), and a test set of 358 paintings (~10%), such that
the number of paintings for each painter in the train, valid and test set is proportional to that in the combined
subset. Figure 1 shows the distribution of number of paintings for each of the 100 painters across the train

and test dataset.
The original dataset consists of paintings with varying scales and aspect ratios. We process the

dataset to retain 64 x 64 patches of images, and use Lanczos filter to fit each image to this patch size [15].
For two of our methods, we also test our technique on 256 x 256 patches, which take significantly longer to
process.

4 Methods
4​.1 Deep CNN

Deep learning allows for a multi-layer neural network model to learn and extract high-level representations of
data. A deep learning algorithm is usually composed of many layers, each layer further down in the neural
network will learn a more and more abstract set of features. In the field of computer vision, deep learning
models are usually combined with convoluted neural network models (CNN) to extract abstract features. A
CNN model is simply a neural network model with convoluted layers wherein the neurons only have local
receptive fields and consecutive convoluted layers do not have full connectivity. In each convoluted layer,
there are multiple feature maps, wherein each feature map corresponds to a particular filter with a common
set of parameters. Due to parameter sharing, each filter detects and learns only one feature across all
spatial locations of the input images. Each convoluted layer would then undergo a nonlinear transformation
in order to make the features linearly separable. In addition, CNN models usually incorporate max pooling
layers by inserting max-pooling layers between convoluted layers, so that the more abstract features learned
in later layers of the network are insensitive to local variations of the input images. The max pooling layers
also serve to reduce the number of neurons in each subsequent layers as the number of feature maps
multiplies.

For our task, we used a pretrained 16 layer CNN trained on object recognition tasks for ILSVC-14
[21]. We finetune this pretrained VGGNet by removing its fully connected classifier, attaching a fresh fully
connected classifier on top, and calibrating this classifier and the last convolutional block of VGGNet on the
multi-class classification task of painter detection. The original weights of VGGNet on the first 4 conv blocks
can still be expected to contain valuable information as they are trained on large datasets for the ImageNet
competition. The fully connected classifier consists of a two dense layers with 256 neurons each and ReLU
activation in the first layer and softmax activation in the second layer. The final architecture of the VGGNet
with the fully connected classifier on top is shown in Figure 2. We train this model to minimize the
categorical cross entropy of classifying painters. The optimization is carried out using stochastic gradient
descent with a learning rate of 0.01 (fine-tuned to promote early convergence.)

4​.2 Deep CNN + SVM

This method utilized the CNN mentioned in Section 4.1 to extract features from the last layer of the
fine-tuned VGGNet. These features serve as inputs to an SVM model which is trained for multi-class
classification of predicting painters from paintings. We carried out this experiment to test the quality of
features being extracted by Section 4.2, since a high performance for both SVM and a fully connected
classifier using the same features as input would indicate better quality of features. We fine-tune the kernel
of the SVM from amongst {rbf, polynomial, linear} and pick Linear kernel since it performs the best on our
validation dataset.

4​.3 Siamese Networks

The third method we implement is a siamese network due to Lecun et al. [16]. Siamese networks take a pair
of inputs and directly predict whether the labels for the two inputs are the same or not. They have been used
successfully for a variety of image verification tasks, such as face verification [17] and signature verification
[18]. Consider a neural network that maps each input ​X to an embedding ​G​ W​ (X) using a mapping function
G​ W parametrized by weights ​W​ . The distance between the mappings of two inputs ​X​ 1 and ​X​ 2 can be
measured as ​D​ W​ (X​ 1​ , X​ 2​) using some distance metric, say Euclidean distance, as shown in the following
equation-

The goal of the network is to minimize the distance ​D​ W​ (X​ 1​ , X​ 2​)​ for input pairs ​X​ 1​ , X​ 2 that have the

same label ​Y​ 1​ , Y​ 2 s.t ​Y​ 1 =Y​ 2​ ; and to maximize the distance for input pairs for which ​Y​ 1 != Y​ 2​ . This can be
achieved by describing a contrastive loss function of the predicted distance between the embeddings of a
pair of inputs and the actual distance (which is 0 if ​Y​ 1 =Y​ 2 and 1 otherwise) as shown in the following
equation-

The first term of the equation measures the penalty if ​Y=0​ i.e if ​Y​ 1 =Y​ 2​ and the second term measures the
penalty if ​Y=1​ i.e if ​Y​ 1 =Y​ 2​ . The margin ​m​ describes the minimum distance between dissimilar pairs of inputs
for them not to contribute to the loss function. This loss function can then be minimized using (stochastic)
gradient descent.

The final architecture of a siamese network is shown in Figure 3, and the convolutional network that
we use to generate the embedding ​G​ W​ is shown in Figure 4. The convolutional network consists of 3
convolutional layers with 32 filters each and a convolutional width of 3, followed by a max pooling layer with
a pool width of 2, and a dropout layer with dropout probability of 0.05. This set of 3 convolutional layers, max
pooling layer and a dropout layer is repeated twice. Finally a fully connected network consisting of two
dense layers completes the convolutional network architecture. All layers use ReLU activation and are
initialized randomly.

Hyperparameter Fine-tuning. ​The layer activation functions, margin for contrastive loss functions ​m and
the total number of (3conv, 1max-pool, dropout) layer set was fine-tuned to minimize the ROC-AUC score of
prediction on the test set, as described in Section 5.2.

5 Experiments

5.1 Experimental Setup

Method 1 and 2 (Deep CNN and Deep CNN + SVM) were trained on all paintings from the train set. Method
3 (Siamese Net) was trained on 102,400 randomly selected pairs of paintings from amongst ~8 million
possible pairs of train paintings.​ ​5000 pairs of test paintings were randomly selected from amongst the
~128,000 possible pairs of test paintings. Method 1 and 2 were used to generate class predictions for each
of the paintings in these pairs and then the binary prediction of whether the painting was by same painter or
not was computed using this multi-class output. Method 3 was used to directly retrieve the label of whether
each test pair is by the same painter or not.​ ​The deep learning models were implemented using Keras
library [20] and SVM was implemented using Scikit-Learn [22]. The experiments were carried out on AWS
g2.2xlarge with an ​NVIDIA GPU.

5.2 Results

The train, precision, recall, accuracy, F1 and ROC AUC scores for each of the methods with different
dimensions for image scaling are presented in Table 1. Due to the computational expense of running Deep
CNN, it was only tested on 256 x 256 images (which were tested before testing 64 x 64 patches for all
methods).

 Image
Size

Test
ROC AUC Test F1 Test

Accuracy
Test

Precision
Test

Recall

Deep CNN 256 x 256 0.547 0.671 0.547 0.526 0.925

Deep CNN + SVM 256 x 256 0.623 0.717 0.622 0.571 0.968

Deep CNN + SVM 64 x 64 0.867 0.882 0.867 0.793 0.993

Siamese Net 256 x 256 0.599 0.617 0.595 0.561 0.685

Siamese Net 64 x 64 0.800 0.833 0.800 0.714 0.995

5 Discussion

Surprisingly, for all patches, all methods work better for smaller patches than for larger patches. The reason
behind this is that the computational overhead of training on larger patches is very high, so Method 1 and 3
were only trained on the large patch dataset for a few epochs which is not sufficient to extract accurate
features from the images. Nonetheless, on 64 x 64 patches all methods achieve high high recall with
reasonably high precision (except for Method 1).

Visualization. ​To investigate the performance of Method 1 further, we use the dimensionality reduction
technique t-SNE to visualize the features extracted by the model [19]. The dataset we use also contains
genre labels (abstract, landscape, portrait etc.) for each painting. Figure 7 corresponds to t-SNE applied to
750 paintings corresponding to Rembrandt and Picasso. Rembrandt and Picasso have different genre
labels, and so unsurprisingly t-SNE is able to successfully discriminate between the two painters quite

successfully (different colors correspond to different painters). However, when we use t-SNE with 9 painters
belonging to the same randomly selected genre, we obtain Figure 8, which is significantly less cleaner than
Figure 7. Thus, our observation suggests that the Deep CNN is able to extract genre level features easily,
but has difficulty differentiating painters from the same genre.

6 Conclusions and Future Work
We implemented three different methods for forgery detection of paintings using deep convolutional neural
networks. The methods were trained on a dataset of +3000 paintings corresponding to 100 painters, and
evaluated on a dataset of +350 paintings. Our results indicate that the computational overhead of this
method is significant, since the methods do not converge when evaluated on larger image patches.
Moreover, extracting painter specific features is difficult as shown by using t-SNE on the paintings with same
genre labels. For future work, we hope to train larger models for more epochs in order to achieve better
convergence and performance. Once an accurate method to distinguish painters is developed, it can be
used for a variety of tasks, such as identifying and visualizing features that make some artists more skilled
than others, or for style transfer of artists features to images.

Acknowledgements

We would like to thank Hao Sheng for his guidance, constructive reviews and helpful comments throughout
the project. We are also grateful to the instructors and all TAs for organizing an excellent course.

References

[1] Mayyasi, A. (2015) ​Why is Art Expensive?​ [Web log post] Retrieved from
https://priceonomics.com/why-is-art-expensive/

[2] Dolnick, E. (2008) ​The Forger's Spell: A True Story of Vermeer, Nazis, and the Greatest Art Hoax of the Twentieth
Century.​ Harper.

[3] Ragai, J. (2013). ​The Scientific Detection of Forgery in Paintings​ . Proceedings of the ​American Philosophical
Society​ , 157(2), 164.

[4] McHugh, M., DiFrancesco G., Gencarelli, J., Debenham, C. ​Art Forgeries and Their Detection.​ [Web log post]
Retrieved from ​http://www.scientiareview.org/pdfs/197.pdf

[5] Lombardi, T. E. (2005). ​The classification of style in fine-art paintings.​ (Doctoral dissertation, Pace University).

[6] Johnson, C. Richard, Ella Hendriks, Igor J. Berezhnoy, Eugene Brevdo, Shannon M. Hughes, Ingrid Daubechies,
Jia Li, Eric Postma, and James Z. Wang. ​Image processing for artist identification. IEEE Signal Processing Magazine
25, no. 4 (2008): 37-48.

[7] Khan, F. S., van de Weijer, J., & Vanrell, M. (2010). ​Who painted this painting. In 2010 CREATE Conference (pp.
329-333).

[8] D. G. Stork. (2009). ​Computer vision and computer graphics analysis of paintings and drawings: An introduction to

https://priceonomics.com/why-is-art-expensive/
http://www.scientiareview.org/pdfs/197.pdf

the literature​ . In Computer Analysis of Images and Patterns, pages 9–24. Springer.

[9] A. Bentkowska-Kafel and J. Coddington. (2010) ​Computer Vision and Image Analysis of Art​ . Proceedings of the
SPIE Electronic Imaging Symposium.

[10] Y. Bar, N. Levy, and L. Wolf. ​Classification of artistic styles using binarized features derived from a deep neural
network​ . 2014.

[11] Saleh, B., & Elgammal, A. (2015). ​Large-scale Classification of Fine-Art Paintings: Learning The Right Metric on
The Right Feature​ . arXiv preprint arXiv:1505.00855.

[12] B. Saleh, K. Abe, and A. Elgammal. ​Knowledge discovery of artistic influences: A metric learning approach. In
ICCC, 2014.

[13] Painters by Numbers. ​https://www.kaggle.com/c/painter-by-numbers​. Kaggle competition.

[14] Visual Art Encyclopedia. ​https://www.wikiart.org/

[15] Lanczos, C. (1950). ​An iteration method for the solution of the eigenvalue problem of linear differential and
integral operators.​ Los Angeles, CA: United States Governm. Press Office.

[16] Hadsell, R., Chopra, S., & LeCun, Y. (2006). ​Dimensionality reduction by learning an invariant mapping​ . In 2006
IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06) (Vol. 2, pp. 1735-1742).
IEEE.

[17] Taigman, Y., Yang, M., Ranzato, M. A., & Wolf, L. (2014). ​Deepface: Closing the gap to human-level
performance in face verification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(pp. 1701-1708).

[18] Bromley, J., Bentz, J.W., Bottou, L., Guyon, I., LeCun, Y., Moore, C., Säckinger, E. & Shah, R. (1993). ​Signature
verification using a “Siamese” time delay neural network​ . International Journal of Pattern Recognition and Artificial
Intelligence, 7(04), 669-688.

[19] Maaten, L. V. D., & Hinton, G. (2008). ​Visualizing data using t-SNE​ . Journal of Machine Learning Research,
9(Nov), 2579-2605.

[20] Keras Github Repository. ​https://github.com/fchollet/keras

[21] Karen Simonyan, Andrew Zisserman. (2014) ​Very Deep Convolutional Networks for Large-Scale Image
Recognition. ​ Published as a conference paper at ICLR 2015

[22] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V. and Vanderplas, J. (2011). Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12(Oct), 2825-2830.

https://www.kaggle.com/c/painter-by-numbers
https://www.wikiart.org/
https://github.com/fchollet/keras

