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1 Introduction 
Art world places a significant value on the “brand” of artists behind art pieces [1]. This incentivizes art                  
forgeries, wherein forgers attempt to imitate famous artists and sell the forgeries for large sums of money to                  
museums and private art collectors. For instance, Han van Meegeren, a failed Dutch painter began forging                
famous painters such as 17th century artist Vermeer in early 20th century and sold forgeries worth $30                 
million before being caught [2]. The inability to catch art forgeries increases the risk of investment in art by                   
art collectors, which in turn impacts preservation of art from an art history perspective. 

We investigate the use of automated art forgery detection using deep supervised learning. During 
the training phase, the computational model learns to detect painter-specific features given digital copies of 
paintings and the corresponding painter labels. Then during evaluation, these models can then be used to 
discriminate whether two paintings are by the same painter or not. We test three different methods for this 
task that make use of deep convolutional neural networks for extracting painter-specific features from 
paintings, followed by evaluation on a reasonably sized dataset, and discussion of results and challenges 
therein. 
 
2 Related Work 
A wide variety of methods have been developed for visual art forgery detection. This includes physical                
methods such as carbon dating to detect anachronistic elements in forgeries, and X-ray diffraction              
techniques for pigment chemical analysis [3]. However, these methods require significant time and cost              
overhead and thus are difficult to scale. We refer the reader to [4] for a review of other physical methods for                     
art forgery detection.  

Recently, digital techniques have also been applied to classify digital images of paintings. Lombardi 
[5] used low level features of images such as texture, shadows, edges etc. to classify a small set of 
paintings into different styles and genres. Much work has also gone into designing features that incorporate 
brushwork analysis and then using these features to classify paintings into different styles [6]. Other 
image-level features such as SIFT have also been used for painting analysis, for instance in [7]. Our work is 
most closely related to the work in [10], which presented a convolutional neural network pre-trained for 
image categorization. It is also directly motivated by the work of [11, 12], in which the authors use a metric 
learning approach for painting classification. The interested reader is referred to [8, 9] for a comprehensive 
literature review of other similar techniques. To the best of our knowledge, few of the techniques applied for 
painting classification have relied on automatic featurization of paintings. Our intuition is that a deep learning 
method such as convolutional neural nets should be able to do this automatically and thus reduce the 
overhead required by developing domain specific features. 

 
3 Dataset and Preprocessing 
We obtain a supervised dataset of +80,000 paintings across a variety of genres, time periods and artists                 
from Kaggle [13]. Most of the images of paintings in this dataset are originally taken from Visual Art                  
Encyclopedia [14], while some others are obtained from contributions by artists to Kaggle. We select a                
subset from this original dataset by retaining all paintings corresponding to 100 random painters from the                
1584 painters in the dataset. This subset contains 3529 total paintings, which we split into a train set of                   
2852 paintings (~80%), valid set of 318 paintings (~10%), and a test set of 358 paintings (~10%), such that                   
the number of paintings for each painter in the train, valid and test set is proportional to that in the combined                     
subset. Figure 1 shows the distribution of number of paintings for each of the 100 painters across the train                   

 



and test dataset. 
The original dataset consists of paintings with varying scales and aspect ratios. We process the 

dataset to retain 64 x 64 patches of images, and use Lanczos filter to fit each image to this patch size [15]. 
For two of our methods, we also test our technique on 256 x 256 patches, which take significantly longer to 
process. 

 
 
 
 
 
 
 
 
 
 
4 Methods 
4​.1 Deep CNN 

Deep learning allows for a multi-layer neural network model to learn and extract high-level representations of                
data. A deep learning algorithm is usually composed of many layers, each layer further down in the neural                  
network will learn a more and more abstract set of features. In the field of computer vision, deep learning                   
models are usually combined with convoluted neural network models (CNN) to extract abstract features. A               
CNN model is simply a neural network model with convoluted layers wherein the neurons only have local                 
receptive fields and consecutive convoluted layers do not have full connectivity. In each convoluted layer,               
there are multiple feature maps, wherein each feature map corresponds to a particular filter with a common                 
set of parameters. Due to parameter sharing, each filter detects and learns only one feature across all                 
spatial locations of the input images. Each convoluted layer would then undergo a nonlinear transformation               
in order to make the features linearly separable. In addition, CNN models usually incorporate max pooling                
layers by inserting max-pooling layers between convoluted layers, so that the more abstract features learned               
in later layers of the network are insensitive to local variations of the input images. The max pooling layers                   
also serve to reduce the number of neurons in each subsequent layers as the number of feature maps                  
multiplies. 

For our task, we used a pretrained 16 layer CNN trained on object recognition tasks for ILSVC-14                  
[21]. We finetune this pretrained VGGNet by removing its fully connected classifier, attaching a fresh fully                
connected classifier on top, and calibrating this classifier and the last convolutional block of VGGNet on the                 
multi-class classification task of painter detection. The original weights of VGGNet on the first 4 conv blocks                 
can still be expected to contain valuable information as they are trained on large datasets for the ImageNet                  
competition. The fully connected classifier consists of a two dense layers with 256 neurons each and ReLU                 
activation in the first layer and softmax activation in the second layer. The final architecture of the VGGNet                  
with the fully connected classifier on top is shown in Figure 2. We train this model to minimize the                   
categorical cross entropy of classifying painters. The optimization is carried out using stochastic gradient              
descent with a learning rate of 0.01 (fine-tuned to promote early convergence.) 

 

 

 

 

 

 

 



4​.2 Deep CNN + SVM 

This method utilized the CNN mentioned in Section 4.1 to extract features from the last layer of the                  
fine-tuned VGGNet. These features serve as inputs to an SVM model which is trained for multi-class                
classification of predicting painters from paintings. We carried out this experiment to test the quality of                
features being extracted by Section 4.2, since a high performance for both SVM and a fully connected                 
classifier using the same features as input would indicate better quality of features. We fine-tune the kernel                 
of the SVM from amongst {rbf, polynomial, linear} and pick Linear kernel since it performs the best on our                   
validation dataset. 

4​.3 Siamese Networks 

The third method we implement is a siamese network due to Lecun et al. [16]. Siamese networks take a pair                    
of inputs and directly predict whether the labels for the two inputs are the same or not. They have been used                     
successfully for a variety of image verification tasks, such as face verification [17] and signature verification                
[18]. Consider a neural network that maps each input ​X to an embedding ​G​ W​ (X) using a mapping function                  
G​ W parametrized by weights ​W​ . The distance between the mappings of two inputs ​X​ 1 and ​X​ 2 can be                  
measured as ​D​ W​ (X​ 1​ , X​ 2​ ) using some distance metric, say Euclidean distance, as shown in the following                
equation- 

 

 
The goal of the network is to minimize the distance ​D​ W​ (X​ 1​ , X​ 2​ )​ for input pairs ​X​ 1​ , X​ 2 that have the                    

same label ​Y​ 1​ , Y​ 2 s.t ​Y​ 1 =Y​ 2​ ; and to maximize the distance for input pairs for which ​Y​ 1 != Y​ 2​ . This can be                       
achieved by describing a contrastive loss function of the predicted distance between the embeddings of a                
pair of inputs and the actual distance (which is 0 if ​Y​ 1 =Y​ 2 and 1 otherwise) as shown in the following                      
equation- 

 

 
The first term of the equation measures the penalty if ​Y=0​ i.e if ​Y​ 1 =Y​ 2​ and the second term measures the                     
penalty if ​Y=1​ i.e if ​Y​ 1 =Y​ 2​ . The margin ​m​ describes the minimum distance between dissimilar pairs of inputs                   
for them not to contribute to the loss function. This loss function can then be minimized using (stochastic)                  
gradient descent.  

The final architecture of a siamese network is shown in Figure 3, and the convolutional network that                 
we use to generate the embedding ​G​ W​ is shown in Figure 4. The convolutional network consists of 3                  
convolutional layers with 32 filters each and a convolutional width of 3, followed by a max pooling layer with                   
a pool width of 2, and a dropout layer with dropout probability of 0.05. This set of 3 convolutional layers, max                     
pooling layer and a dropout layer is repeated twice. Finally a fully connected network consisting of two                 
dense layers completes the convolutional network architecture. All layers use ReLU activation and are              
initialized randomly. 

Hyperparameter Fine-tuning. ​The layer activation functions, margin for contrastive loss functions ​m and             
the total number of (3conv, 1max-pool, dropout) layer set was fine-tuned to minimize the ROC-AUC score of                 
prediction on the test set, as described in Section 5.2. 

 

 
 
 
 
 

 



 
 
 
 
 
 
5 Experiments 
 
5.1 Experimental Setup 
 
Method 1 and 2 (Deep CNN and Deep CNN + SVM) were trained on all paintings from the train set. Method 
3 (Siamese Net) was trained on 102,400 randomly selected pairs of paintings from amongst ~8 million 
possible pairs of train paintings.​ ​5000 pairs of test paintings were randomly selected from amongst the 
~128,000 possible pairs of test paintings. Method 1 and 2 were used to generate class predictions for each 
of the paintings in these pairs and then the binary prediction of whether the painting was by same painter or 
not was computed using this multi-class output. Method 3 was used to directly retrieve the label of whether 
each test pair is by the same painter or not.​ ​The deep learning models were implemented using Keras 
library [20] and SVM was implemented using Scikit-Learn [22]. The experiments were carried out on AWS 
g2.2xlarge with an ​NVIDIA GPU. 
 
5.2 Results 
 
The train, precision, recall, accuracy, F1 and ROC AUC scores for each of the methods with different 
dimensions for image scaling are presented in Table 1. Due to the computational expense of running Deep 
CNN, it was only tested on 256 x 256 images (which were tested before testing 64 x 64 patches for all 
methods). 
 

 Image 
Size 

Test  
ROC AUC Test F1 Test 

Accuracy 
Test 

Precision 
Test 

Recall 

Deep CNN 256 x 256 0.547 0.671 0.547 0.526 0.925 

Deep CNN + SVM  256 x 256 0.623 0.717 0.622 0.571 0.968 

Deep CNN + SVM  64 x 64 0.867 0.882 0.867 0.793 0.993 

Siamese Net 256 x 256 0.599 0.617 0.595 0.561 0.685 

Siamese Net 64 x 64 0.800 0.833 0.800 0.714 0.995 
 
5 Discussion 
 
Surprisingly, for all patches, all methods work better for smaller patches than for larger patches. The reason 
behind this is that the computational overhead of training on larger patches is very high, so Method 1 and 3 
were only trained on the large patch dataset for a few epochs which is not sufficient to extract accurate 
features from the images. Nonetheless, on 64 x 64 patches all methods achieve high high recall with 
reasonably high precision (except for Method 1). 
 
Visualization. ​To investigate the performance of Method 1 further, we use the dimensionality reduction 
technique t-SNE to visualize the features extracted by the model [19].  The dataset we use also contains 
genre labels (abstract, landscape, portrait etc.) for each painting. Figure 7 corresponds to t-SNE applied to 
750 paintings corresponding to Rembrandt and Picasso. Rembrandt and Picasso have different genre 
labels, and so unsurprisingly t-SNE is able to successfully discriminate between the two painters quite 

 



successfully (different colors correspond to different painters). However, when we use t-SNE with 9 painters 
belonging to the same randomly selected genre, we obtain Figure 8, which is significantly less cleaner than 
Figure 7. Thus, our observation suggests that the Deep CNN is able to extract genre level features easily, 
but has difficulty differentiating painters from the same genre. 

 

 

 

 

 

 

 

 
 
6 Conclusions and Future Work 
We implemented three different methods for forgery detection of paintings using deep convolutional neural              
networks. The methods were trained on a dataset of +3000 paintings corresponding to 100 painters, and                
evaluated on a dataset of +350 paintings. Our results indicate that the computational overhead of this                
method is significant, since the methods do not converge when evaluated on larger image patches.               
Moreover, extracting painter specific features is difficult as shown by using t-SNE on the paintings with same                 
genre labels. For future work, we hope to train larger models for more epochs in order to achieve better                   
convergence and performance. Once an accurate method to distinguish painters is developed, it can be               
used for a variety of tasks, such as identifying and visualizing features that make some artists more skilled                  
than others, or for style transfer of artists features to images. 
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