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Abstract - In the context of music, instrument identification would contribute improvements in music information

retrieval, genres classification, and audio engineering. In this report, the neural network model was applied to

identify music instruments given one note from sets of orchestral musical sounds. A set of features were also
proposed in this report that can be used to identify music instruments. Results are presented from both neural

network and SVM learning algorithms applied to our dataset.

1. Introduction

Source separation from mixed audio signals has
always been a high-demanding topic in audio
signal processing. Instrument identification is of
significant importance in solving many problems
such as remastering archived recordings in audio
industry. Previously, work of music instruments
recognition [1] [2] focused on the Support
Vector Machine (SVM) classification method
with the Fast Fourier Transformation (FFT)
based cepstral coefficients or FFT based
mel-frequency cepstral coefficients as features.
In this project, a neural network model was
trained and optimized to identify music
instruments relative high precisions. In
particular, with the different characteristics of
musical instruments, sets of orchestral musical
sounds are presented, and the neural nets will
recognize what instruments they are. A set of
features were also proposed in this report that
can be used to identify music instruments. In
addition, comparison between the neural
network model and classification algorithms
implemented with SVM [1] [2] were also
performed as the approach to validate our
method.

2. Data
A. Preprocessing

The dataset used in the project was from
London Philharmonic Orchestra sound samples

[3] that contains one single note played of all
eight instruments used in a symphonic orchestra.
Similar to other work [2], we designed the
feature set from the frequency domain which
simplify the computing consumption.

Training data was created in MATLAB with
FFT to obtain their spectra, which were then
divided into 50 sections evenly serving as 50
feature vectors. This option is based on the work
from Babak Toghiani-Rizi and Marcus
Windmark to avoid potential risks of overfitting.
Each section is then averaged to represent the
amplitude of the current feature vector. Fig. 1
shows the sound sample of violin transformed
from time domain to frequency domain.

Since the pitch of sound samples are in the
range of C4 to C5, it is reasonable to filter sound
samples through a low-pass filter with cutoff
frequency at 1000 Hz to eliminate high
frequency components in order to reduce
computation time while keeping most energy.

The table below shows the distribution of
samples:

Inst. Banjo Cello Clarinet English Total
Horn

Num. 23 166 131 234

Inst. Guitar Oboe Trumpet Violin 1244

Num. 29 155 140 366




Amplitude

Table 1. the distribution of instrument samples
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Figure 1. Sound sample of trumpet in time domain
and frequency domain( Discard half of points)

B. Feature Extraction for Dataset
" DMV : b

This dataset contains 1244 labeled samples in
total, each donates 50 features (the after
preprocessing dataset) .

" DMV :

Based on Dataset #1, apply low-pass filter with
cutoff frequency at 900Hz to filter all frequency
components above 900Hz for all samples. Since
Dataset #1 has samples in the range of 1-1000
Hz, it’s inspiring to study the importance of 10%
less information, especially under the condition
that dealing with massive input data.

" DRV

Clark [4] performed a study on the importance

of the different parts of a tone for human

recognition and concluded that having only the
attack resulted in a good accuracy of recognizing
most instruments. Then, in this report, the attack
feature was extracted and the importance of the
attack was analyzed by having only the attack in
the Dataset #3.

The extraction of each sample was performed
in time domain before the preprocessing, by
finding the onset point where this energy was 10
dB over the signal average as mentioned in
Bello‘s work [5] (attack period has a fixed
transient length 80 ms). Then partition each
attack sample into 50 sections to get 50 features
as well.
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In this section, different models and techniques
were tested with respect to dimensions of input
data and computation cost. Eventually, Neural
Network using Tensorflow[7] and SVM were
applied to this project.

A. Neural Network

In our multi-layer perceptron model, the input
layer lreads in 50 features contributed by an
instrument sample. The hidden layer bwith an
sigmoid activation function has 30 hidden nodes,
reducing the feature dimension to 30. The
activation function for the output layer is the
softmax function, which gives a probability
distribution over output labels.

To Train our model, define the objective to be
minimizing the cross-entropy. Cross-entropy (eq.
1) measures how inefficient our predictions are
for describing the truth in.

Hy(y) = - vlog(y:) Eq (1)

Where vy is the predicted probability distribution,
and y'is the true distribution (the one-hot
instrument labels).

Then, instead of using the simple Gradient



Descent optimization method, the neural
network uses Adam Optimizer of Tensor ow
[7], which is implemented based on Diederik
Kingma and Jimmy Ba’s Adam algorithm[8] to
control the learning rate. Adam algorithm has
advantages over the simple Gradient Descent
Optimizer. Foremost is that it uses momentum,
which is the moving averages of the parameters.
Figure 2 shows the neural network model used
for the project.
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Figure 2. Neural Network Structure

B. Support Vector Machines (SVMs)

SVMs are a set of supervised learning methods
widely used for classi cation, regression and
outliers detection. In addition, SVMs are very
versatile that can be adapted and speci ed for
di erent decision functions using di erent
kernels. In this project, RBF Kernel is chosen to
perform the task, which is well known in Signal
Processing as a tool to smooth the data.
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K(x,x') = exp (— ) Eq. (2)

The RBF kernel on two samples x and X/,
represented as feature vectors in the input space.
And the parameter grid contains the several
chosen value for Penalty parameter C of the
error term and the Kernel coe cient for RBF

kernel.

4. Results
A. Tensorflow Neural Network

Fig.3 shows the curve of the cross-entropy
versus training iterations with the learning rate
of 0.001.
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Figure 3. Cross-entropy versus training iterations
with learning rate 0.001

The neural network model was trained with the
datasets with 20%-20%-60% split on the test set,
validation set, and training set. Generalization
error, validation error, and training error is
shown below:
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Figure 4. Generalization error, validation error,
and training error of three datasets

It is noticeable from Fig. 4 that best results
came from Dataset #1 with the test accuracy of
87%, The training and validation error over
iterations is shown below:
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Figure 5. Training error, validation error vs. Training
Iterations for Dataset#1

To visualize the learning process of our model,
Tensorflow built in visualization tool Tensorboard is
used, which is able to display the weights and biases
in different layers during the training process and
help to check if the neural network model actually
learned something.

Since the Dataset#1 gives the best model after
training, it’s now helpful to show how the weights
and biases change during the training process in the
hidden layer and the output layer.

Figure 6-a and Figure 6-b shows the change of
weight distribution of the hidden layer and the output
layer, respectively. After 8000 taining steps, weights
ranges from -8 to 8 approximately in the hidden layer
and it ranges from -6.5 to 7 approximately in the
output layer.
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Figure 6-a Dataset #1: Weights-Training iterations
Histogram for the hidden layer
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Figure 6-b Dataset #1: Weights-Training iterations
Histogram for the prediction layer

Figure 6-c and Figure 6-d shows the change of
biases of the hidden layer and the output layer,
respectively. After 8000 taining steps, biases change
from O to a range of -3 to 4.5 approximately in the
hidden layer and to a range of -04 to 0.85
approximately in the output layer.
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Figure 6-c Dataset #1: Bias-Training iterations
Histogram for the output layer
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Figure 6-d Dataset #1: Bias-Training iterations
Histogram for the output layer



B. SVM with RBF Kernel
SVM model is implemented based on

sklearn[6] and used to train on the dataset #1 in
order to make a comparison with the neural
network model. GridSearchCV (cross validation
to choose hyper-parameters) with a parameter
grid is applied to find the best SVM classifier.

Results of the instrument classification with
SVM model for Dataset#1 is shown in Table 2.
The overall test accuracy is 0.84, which is lower
than the accuracy of 0.87 given by the neural
network model.

Instruments precision recall fl-score support
Banjo 0.33 1.00 0.50 1
Cello 0.84 0.90 0.87 42

Clarinet 0.93 0.93 0.93 40

English Horn 0.84 0.88 0.86 56
Guitar 1.00 0.86 0.92 7
Oboe 0.86 0.76 0.82 42

Trumpet 0.63 0.65 0.64 26
Violin 0.84 0.82 0.83 97
avg/total 0.84 0.84 0.84 311

Table 2. Results based on SVM model for Dataset#1
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Figure 7. Confusion matrix for Dataset#1

The confusion matrix shown in Figure 7 shows
that Banjo is easily recognized as the oboe,
which gives the worst test accuracy of 0.33 and
the trumpet is easily recognized as some other
instruments, which gives a 0.63 accuracy.

It’s clearly to see that these two instrument are
difficult to recognize and heavily pull down the
total accuracy. Also, for the instruments that
belong to the same family, such as the English
horn and the Oboe, which are both woodwind
instrument, misclassification is likely to be seen.

5. Conclusion and Discussion

With techniques introduced in Tensorflow
Neural Network section, 87% recognition
accuracy was achieved. As for the SVM model,
an accuracy of 84% was achieved.

It is noticeable that Dataset #2 has lower
accuracy than #l because frequency features
above 900Hz were filtered out, losing frequency
information of original samples by 10%. Dataset
#3 with the attack part only generates lowest
accuracy and higher error rate among three
datasets because decay, sustain, and release of an
instrument clip, which are essential parts of
determining a timbre, were cut off and thus
Dataset #3 lacks significant portion of time
domain features.

In addition, Experiments with some other
feature engineering process were conducted,
including partitioning each data sample into 200
sections or more were to generate more features.
However, prediction accuracies on such datasets
with higher dimensional features are very low,
which is caused by inferior classifiers due to the
overfitting.
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