
1

Algorithms for Learning Good Step Sizes
Brian Zhang (bhz) and Manikant Tiwari (manikant)

with the guidance of Prof. Tim Roughgarden

I. MOTIVATION AND PREVIOUS WORK

Many common algorithms in machine learning, from
logistic regression to neural networks and beyond, rely
on hyperparameters to function well. In gradient descent,
too large a step size can cause the iteration to blow up
and not terminate; too small a step size and the iteration
doesn’t converge fast enough. Tuning these parameters
can be very difficult: the manual for the popular linear
and integer programming solver CPLEX has a 200-
page parameter manual that covers 135 parameters, and
advises simply that “you may need to experiment with
them” [1].

Existing methods for parameter tuning include just
hand-tuning, a brute-force or random search, and grid
search on the full set of training data, none of which
are especially satisfying. For example, [2] gives a com-
parison between random and grid search on various
problems, concluding that random search is better in
many cases. [3] and [4] go further by applying a
gradient-descent-like algorithm to the hyperparameters
themselves. There is even work on determining whether
it is even important to optimize hyperparameters [5].
However, all of these articles focus on hyperparameter
optimization by repeatedly training on the full training
set with different hyperparameters, and seeing which is
best. If the training set is large or the model is complex,
this may be highly impractical.

According to the theoretical framework proposed by
Prof. Rishi Gupta and Prof. Tim Roughgarden [1], we
can learn these hyper parameters by using grid search
on a significantly smaller subset of the full training set.
We examine specifically the case of tuning the step size
ρ used in gradient descent.

More formally, let D be an hidden1 probability distri-
bution over a set of functions that can be optimized by
gradient descent2. For a function f in the support of D,
let Cost(f ; ρ, ν) be the number of steps it takes gradient
descent to converge such that the gradient ∇f(ρ) has
norm less than ν. We would like an algorithm that learns
the hyperparameter ρ that minimizes the expected cost
C(ρ) ≡ Ef∼D[Cost(f ; ρ, ν)]. Intuitively, D defines a
“family” of related optimization problems, and we would

1i.e. the algorithm does not know D, but it can sample problems
f ∼ D

2under the assumptions laid out in the next paragraph

like a hyperparmeter ρ that does well for the problems
in this family.

It is proposed in [1] that, in order to select a good
hyperparameter, one does not need to perform a grid
search or random search on the full set of training data;
rather, it suffices to run a grid search on a much smaller
subset of the training data. In particular, suppose that
we want to find the best step size ρ∗ ∈ [ρ`, ρu] for some
range 0 < ρ` < ρu; there are known constants L >
0, Z > ν, c ∈ (0, 1) such that for any function f in the
support of our hidden distribution D:

• f is L-smooth; i.e. ‖∇f(x)−∇f(y)‖ ≤
L‖x− y‖; intuitively, the gradients do not
change too fast

• the starting point x0 for gradient descent is chosen
such that ‖x0 − x∗‖ ≤ Z, where x∗ is the mini-
mizer of f ; intuitively, we do not start too far away
from the minimum

• ‖x− ρ∇f(x)− x∗‖ ≤ (1−c)‖x− x∗‖; intuitively,
there is a guarantee that progress is made toward the
minimum.

Under these reasonable conditions, [1] shows that run-
ning a grid search with a grid of size (ρu−ρ`)/K where
K = νc2/LZ, and Õ(H3/τ2) samples from D, we can
find ρ that achieves error ε(ρ) ≡ C(ρ)−C(ρ∗) < 1+ τ
with high probability, where Õ hides logarithmic fac-
tors and H = log(ν/LZ)/ log(1− c) (we discovered
a mistake in the analysis of [1], which lists instead
H = log(ν/Z)/ log(1− c). This mistake does not affect
the rest of the analysis in [1] nor any of our findings.)

II. EMPIRICAL TESTING: A SIMPLE CASE

Our first objective was to test the above hypothesis on
some simple functions.

A. A very simple distribution

Consider quadratic functions of the form f(x) =
1
2ax

2 for some constant a ∈ [m,L], where L > m > 0.
Let D be the distribution generated when a above is
distributed with density p(a) on support [m,L], and fix
the starting point x0 = Z. Suppose ρu ≤ 2/(m + L).
so that gradient descent does not blow up too much.
Arbitrarily, let’s set ρ` = 1

2ρu. Then for such functions
f ∼ D, we make a few observations:

• ∇f(x) = ax, so f is L-smooth

2

• The minimum progress condition is satisfied by the
value c = ρ`m

and so D satisfies the conditions above.

B. Computing ρ∗

This distribution is straightforward enough that we
can compute the optimal value ρ∗ mathematically if we
assume that the costs are large enough that they can be
treated as continuous. Let f(x) = 1

2ax
2 ∼ D. Notice

first that for any ρ ∈ [ρ`, ρu], by similar logic to that
used in [1] to compute H , we have

Cost(f ; ρ) =
log(ν/aZ)

log(|1− aρ|)

C(ρ) = E
α∼p

[
log(ν/αZ)

log(|1− αρ|)

]
=

∫ L

m

log(ν/αZ)p(α)

log(|1− αρ|)
dα

ρ∗ = argmin
ρ

C(ρ)

= argmin
ρ

∫ L

m

log(ν/αZ)p(α)

log(|1− αρ|)
dα

While this integral is difficult to solve analytically, both
the integral and optimization above are easily solved by
Scipy’s integrate and optimize libraries, allowing
us to easily compute the actual error ε(ρ) = C(ρ) −
C(ρ∗) for any given ρ.

C. Methods

If the bounds in Section I hold precisely, we expect
that, if we use a grid of size (ρu− ρ`)/K and a sample
size Õ(H3), then, in the average case, we should be able
to find ρ that achieves error ε(ρ) that does not increase
with H or 1/K increase. Here, we attempt to confirm
this theoretical result.

We will use the parameter range [ρ`, ρu] defined
above. Notice first that, using these parameters, H and K
do not depend on the exact values of ν, Z,m,L, but only
on the ratios ν/Z and m/L. We can therefore WLOG
set Z = L = 1 and focus only on ν and m. Further,
we notice that K is tiny for any reasonable values of
these parameters, so we take the liberty of making the
grid size O((ρu − ρ`)/K) (adding a constant factor). We
pick the default values ν = 2−23,m = 2−9, and attach
a constant factor of 10−10 onto both the grid size and
the sample size. These values are somewhat arbitrary,
but they were picked because (a) they are somewhat
reasonable in practice: typically we have no idea what
the “eigenvalues” of our gradient descent are, so m� L,
and we want to stop at a very small gradient, so ν � Z;
(b) the constant factors mean that the sample size and
grid size are not too large, so that the runtime of our

Fig. 1. Top: Plot of ν against average error, while holding m fixed.
Bottom: Plot of m against average error, while holding ν fixed.
Both plots are log-log plots; all logs are taken base 2

experiments is reasonable; and (c) ν and m are small
enough that the gradient descent takes long enough that
errors are measurable.

For concreteness, using with the values m = 2−9, ν =
2−23 (which are used in the tests below) and plugging
in Prof. Roughgarden’s formulas gives H ≈ 8200 and
K ≈ 4.5 × 10−13, which immediately makes clear the
need for scaling the grid and sample sizes by a very small
constant factor. After scaling, we use a sample size of
54 and grid size of 220, which is entirely reasonable to
work with.

D. Experiments and Results

For our first test, we consider a simple uniform
distribution p (i.e. p(a) = 1

L−m). we leave m at 2−9

and vary ν between 2−23 and 2−19. At each value of
ν, we run the algorithm T = 1000 times, achieving T
different empirically computed step sizes ρ1, . . . , ρT , and
then compute the average error 1

T

∑T
i=1 ε(ρi). For our

second test, we leave ν at 2−23 and vary m between 2−8

and 2−9, using the same procedure.
Graphs of the results of the above tests can be found

in Fig. 1. In both cases, we see clearly that, as m and ν
decrease (so that H and 1/K are both increasing), the
expected error decreases almost linearly in the log-log
plot. As stated before, the theoretical result would predict

3

Fig. 2. The m vs. error plot, like the one in Fig. 1, but this time with
sample size O(

√
H) instead of O(H3). Notice the now complete lack

of correlation.

that error should not change as we vary the parameters.
The linear relationship shown in the graph suggests that
the theoretical bound can be tightened in some practical
cases such as this. We now seek what exponent on H will
be needed to make these bounds tight; in other words,
try to sample O(Hk) samples for different values of
k, and find the k for which the resulting graphs have
near-zero linear relationship. Remarkably, some testing
with various exponents yields that k ≈ 1/2 is the proper
exponent. Using O(

√
H) instead of O(H3) samples for

each test, we end up with the graph in Fig. 2, in which
we find nearly no relationship between the complexity
of the problem (which grows with decreasing m) and
the error rate. This suggests that the number of samples
required in this simple case is around O(

√
H).

Another case to test was that of different distribu-
tions: up to now we have been using p as a uniform
distribution p(a) = 1

L−m . To investigate whether these
above observations also applied to other distributions, we
also tested a log-uniform distribution; i.e. one for which
log a is uniformly distributed between logm and logL.
It can be easily checked that the density function for this
distribution is

p(a) =
1

a(logL− logm)

We run the test by simply swapping out the uniform
density function for this new density. Even in this case,
we find similar results; in particular, a plot with O(

√
H)

samples is shown in Fig. 3, demonstrating that this
number of samples is also more than sufficient in the
log-uniform case.

E. Analysis
The above experiments show clearly that the bound

on the number of samples required is even smaller
than O(

√
H) for multiple distributions D over one-

dimensional quadratics. Further quick experiments (plots

Fig. 3. The m vs. error plot, like the one in Fig. 2, but this time with
a log-uniform distribution.

not shown) yield negative correlations when the number
of samples is decreased to O(1), indicating that the
bound lies somewhere between O(1) and O(

√
H) for

more than one distribution. This is surprising, because it
is a far cry from the O(H3) samples recommended by
[1].

Notice also the stronger positive correlation and gen-
erally smaller errors observable in Fig. 3, which uses the
same sample sizes as Fig. 2. These differences suggest
that in some sense the log-uniform distribution is “easier
to learn” than the uniform distribution.

Further, we must note that the constant factors on the
grid and step sizes are not large (in the first experiment
we have set both to 10−10), and the average errors that
we are finding are also not large at all: on the order of
23 = 8 iterations or fewer. This means that, in practice, at
least for gradient descent on one-dimensional quadratics,
even for very extreme values of ν/Z and m/L, very few
samples (< 100) and a very small grid (also < 100) are
needed to get a good idea of what the best step size is.

Lastly, some preliminary experimentation indicates
that similar error rates are achieved for higher dimen-
sional general quadratic forms f(x) = 1

2x
TAx. Sadly,

these claims are harder to verify, since it is not as
straightforward to compute the cost function C(ρ) in
these cases, and so the error ε is harder to compute
as well. However, since none of the calculations we
performed have any dependence on the dimension of the
problem, it is reasonable to predict that the errors would
not change.

This work shows that, empirically, in many cases, a
small sample is sufficient to discern the best step size. It
must be said that the numerical calculations performed
here to determine the required step and grid size are
difficult to do in practice, since the values, in particular
Z and c, are hard to know in advance. But the general
framework–sample a small number of training examples,
find the step size that works best on these examples,
and claim that this step size should work well on the

4

whole training set–applies regardless. In the next section,
we apply this general framework to a neural network–a
highly complex system for which these calculations are
nearly impossible to perform, and for which convergence
to a global optimum is not even guaranteed–to see how
these observations hold in practice.

III. APPLICATION: NEURAL NETWORKS FOR DIGIT
CLASSIFICATION

To test this theory on a practical problem, we build a
simple neural network to be used on the classic problem
of digit classification. Our inputs are 28× 28 grayscale
images of digits, and our output is a digit, 0-9. We set up
a neural network with one input layer of size 784 = 282,
a varying number of hidden layers each with 24 neurons,
and an output layer of size 10 (one output neuron for
each digit). We used the sigmoid function

σ(z) = 1/(1 + exp(−z))

as our activation function, and the standard backpropa-
gation algorithm. In the final layer, we use the softmax
function for output:

ŷj =
exp(zj)∑9
k=0 exp(zk)

where zj is the value in the jth output neuron, and ŷj
can be interpreted as our confidence that this particular
example encoded the digit j. Further, to smooth out
costs, we use the cross-entropy cost function:

Cost = − 1

n

n∑
i=1

9∑
j=0

[
y
(i)
j log ŷ

(i)
j

+ (1− y(i)j) log
(
1− ŷ(i)j

)]
where y

(i)
j is an indicator for whether the ith training

example was an image of the digit j, and ŷ
(i)
j is the

value of the jth output. All of the above techniques are
well known and detailed in e.g. [6]

We decided to test a grid of three step sizes:
2.5, 0.25, 0.025, and sample sizes ranging from 10 to
10000. These highly varying step and sample sizes were
sufficient to give us a good idea of the general picture.
As stated before, gathering actual numerical data such as
Z or c in the prior analysis would be nearly impossible
for this problem, so we settle for applying the general
idea of using a small grid and small sample size.

It quickly became clear that more than 50 samples
would be required even for a neural net with just one
hidden layer. However, 100 samples sufficed for the one-
layer case, as can be seen in the first and third graphs
in Fig. 4: with 100 samples (top graph), it is clear

0 5 10 15 20 25 30
Epoch

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

C
o
st

Cost Vs Epoch with 1 hidden layer(sample size 100)

η = 0.025

η = 0.25

η = 2.5

0 5 10 15 20 25 30
Epoch

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

C
o
st

Cost Vs Epoch with 2 hidden layer(sample size 500)

η = 0.025

η = 0.25

η = 2.5

0 5 10 15 20 25 30
Epoch

1.0

1.5

2.0

2.5

3.0

3.5

C
o
st

Cost Vs Epoch with 1 hidden layer(sample size 1000)

η = 0.025

η = 0.25

η = 2.5

0 5 10 15 20 25 30
Epoch

2.9

3.0

3.1

3.2

3.3

3.4

3.5

3.6

C
o
st

Cost Vs Epoch with 3 hidden layer(sample size 1000)

η = 0.025

η = 0.25

η = 2.5

Fig. 4. Number of iterations (x-axis) vs entropy training cost (y-axis)
for various choice of number of hidden layers and sample sizes

5

that 0.25 is the best step size; this pattern continues up
through 1000 samples (third graph) and beyond, so we
can safely conclude that 0.25 is indeed a good step size
that generalizes to the full training set.

As we increased the number of layers, the sample size
required to find a reasonable step size also increases.
With two layers and the same sample size 100 (graph
not shown), step sizes 2.5 and 0.25 had nearly the same
learning curve. Increasing to 500 samples sufficed to
clearly discern the difference between 0.25 and 2.5 for
two layers (second graph in Fig. 4). For three layers,
1000 samples sufficed. It is clear, then, that the number
of samples necessary increases with the complexity of
the neural network. This is of course expected intuitively,
but it needs some justification since the theoretical
results include no mention of the number of variables
in the function. One justification for this phenomenon is
that adding layers can have an effect on the minimum
progress condition c and the starting distance Z from
the local optimum, both of which are components of the
formula in Section I for the number of required samples.
However, this is again hard to verify, because Z and c
are difficult if not impossible to compute in this scenario.

We notice that even for a reasonably sized neural
network with three hidden layers, we do not require
such a large sample (only 1000 training examples) to
determine a good step size to use in gradient descent.
This is extremely important, because this means that, in
practice, finding a good step size, even for an objective
as complex as a neural network,

IV. CONCLUSIONS

In this report, we examined the practical implications
of a theoretical framework for identifying good hyperpa-
rameters; in particular, for learning good step sizes. We
applied the theoretical framework to a simple quadratic
optimization problem, and found two main results: first
that the theoretical bounds given were not at all tight (we
were able to demonstrate a bound in practice of O(

√
H)

instead of O(H3)), and that, in practice, generally a
very small sample and very small grid are sufficient to
determine a very good step size. We then applied these
general observations to a more complex system–a neural
network–and found that, even as the complexity of the
neural network grows very large, a reasonable number
of training examples (< 1000) can be used to determine
a good step size, which can then be applied to the full
training set. This means that, in practice, one can find
a good step size to use without too much effort using
a small training set, and then say with some confidence
that this step size will also work on the full training set.

V. FURTHER WORK

More work can be done to figure out what distri-
butions are ”harder” than others to learn: maybe there
is some distribution p so difficult that it does require
O(H3) samples to learn. Further, it could be possible to
prove the irrelevance of dimension–doing this amounts
to just proving that the error ε(ρ) does not depend on
dimension, which appears to be empirically true. Finally,
it could be possible to come up with estimates of Z and c
for the neural network case that are good enough that we
can directly apply the calculations shown in the previous
parts.

REFERENCES

[1] R. Gupta and T. Roughgarden, “A PAC approach to application-
specific algorithm selection,” in Proceedings of the 2016 ACM
Conference on Innovations in Theoretical Computer Science,
pp. 123–134, ACM, 2016.

[2] J. Bergstra and Y. Bengio, “Random search for hyper-parameter
optimization,” Journal of Machine Learning Research, vol. 13,
no. Feb, pp. 281–305, 2012.

[3] D. Maclaurin, D. Duvenaud, and R. P. Adams, “Gradient-based
hyperparameter optimization through reversible learning,” in Pro-
ceedings of the 32nd International Conference on Machine Learn-
ing, 2015.

[4] Y. Bengio, “Gradient-based optimization of hyperparameters,”
Neural computation, vol. 12, no. 8, pp. 1889–1900, 2000.

[5] H. Hoos, U. CA, and K. Leyton-Brown, “An efficient approach
for assessing hyperparameter importance,” 2014.

[6] I. Goodfellow, Y. Bengio, and A. Courville, “Deep learning.” Book
in preparation for MIT Press, 2016.

	Motivation and Previous Work
	Empirical Testing: A Simple Case
	A very simple distribution
	Computing *
	Methods
	Experiments and Results
	Analysis

	Application: Neural Networks for Digit Classification
	Conclusions
	Further Work
	References

