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I. INTRODUCTION  

Storage system is the key component in big data. As data 
size grows, we need to scale storage system efficiently. 
Majority of today’s storage devices present a simple linear 
block address space to the operating system. This simplistic 
addressing scheme treats each block address as a generic 
bucket of opaque data. While this architecture allows the 
operating system to easily abstract the stored data for upper 
layer application to use, it offers the devices no insight into the 
content of the data nor the relationship among data at various 
addresses. Enabling the devices to intelligently assign data 
storage location and plan data movement across devices in 
different tiers of the entire storage system can optimize the 
system’s performance and cost. 

This paper explores using machine learning (ML) to 
construct a model to design a storage system to achieve 
minimum access latency at lowest cost.  The ML model will 
coordinate interactions across different devices in the system 
and within each device, it will direct the location to store the 
data. The input to our ML model is IO trace file. The trace file 
lists all IO activities to a storage device. With each IO record a 
training example, our data set consists of all IO records from 
the input trace file. They are fed into ML-clustering algorithm 
with access time and offset as features. Outputs are clusters of 
IO records indicating which accesses were accessed with 
temporal and spatial locality. 

II. RELATED WORK 

A. Caching and prefetching 

A storage system consists of tiers of different devices with 

varying cost and performance. Top tier is the smallest 

capacity, fastest, and most expensive. Fully utilizing the top 

tier is the key to minimize latency while keeping cost down. 

Kroeger et al. proposed caching frequently accessed data and 

prefetch data to be accessed in near future into the top tier [1]. 

B. Data sementic aware devices 

Physical devices that understand the specific applications 

issuing IO requests to them can organize data to minimize 

number of accesses and each access’ latency. Sivathaunu et al. 

proposed database aware storage [2]. The storage system 

snooped write-head log of the data base system to accurately 

infer the evolving access pattern. It also gathered statics such 

as access time of queries, correlation between table/indexes, 

and number of queries on tables over a duration of time to 

devise caching scheme.  

Arpacii-Dusseau et al. applied similar idea to construct a 

file system aware disk, which utilized similar statistics as 

proposed by Sivathaunu et al. and directory/inode structure 

specific to file system to infer applications’ view of data 

blocks [3]. 

More transparency between upper level application and 

physical devices is the most direct method to construct an 

intelligent storage system, but it incurs significant costs:  

complication in design and extra hardware overhead. 

C. Device characteristics aware applications 

This approaches tackles the opacity issue between 
application and device from the opposite direction as described 
in section B. Upper level applications are developed with 
assumptions on specific hardware’s behaviors. Schindler et al. 
proposed embedding knowledge of disk’s physical geometry 
information in applications’ algorithm to align related accesses 
within a disk track to minimize access latency [4]. This works 
well until the hardware design obsoletes.  

D. Machine learning approach 

We can apply machine learning to allow storage system to 

infer data semantic without the transparency between higher 

level application and physical devices as described in section 

B. Wildani et al. applied k-means on IO accesses history to 

identify access upper level applications’ working sets [5]. Our 

proposal also uses a clustering algorithm to learn applications’ 

access pattern, but incorporates an additional inferred feature. 

We also explored multiple runs of clustering algorithm on the 

same data set to learn time domain and spatial domain 

separately. 

III. DATASET AND FEATURES 

Our dataset consists of ~2 million IO records collected by 
Microsoft on their MSN Storage file server over a duration of 6 
hours [6]. Each IO record describes an IO access by its time 
issued, type (read or write), location addressed (offset), data 
size, and retrieval latency. The raw trace files include accesses 
to multiple disks. The time, offset, and size are in units of 
microseconds, bytes respectively. Preprocessing separates IOs 
from different disks to different datasets and converts the 
features to storage standard format/units. Offset and size are 



transformed from bytes into number of blocks. A block is the 
smallest addressable unit for any block device, such as SSD 
and disk. Industry standard block size is 512 bytes. Access 
time given in microseconds is converted to milliseconds to 
prevent overflow of representation in signed 32-bit data types. 
This is acceptable because a typical IO access is on the order of 
milliseconds [8]. Figure 1 plots the read accesses and figure 2 
plots the write accesses captured during the first 10 minutes of 
disk0 IO trace. 

 

Figure 1: write accesses of first 10 minutes of disk0 

 

Figure 2: read accesses of first 10 minutes of disk0 

Based on the result of B. Wildani et al., we selected access 
time and offset as features for our first pass clustering run. This 
pass of clustering is made to bias towards time domain (y-axis 
direction) grouping by dividing offset with a factor α. Figure 3 
shows an example clustering output. Data points in the same 
color are in one cluster. The stars indicate the cluster centroids. 
The output of this first pass clustering is showing what the ML 
algorithm learned as an “epoch” duration. An epoch defines the 
unit of time during which temporally related accesses took 
place. The duration of an epoch evolves as time progresses and 
applications’ access pattern changes. 

 

 

 

Figure 3: first pass time centric clustering result of first 10-
minute trace from disk1 

 Once we divided the time domain into slices of epochs, we 
iterate through all the epochs and run clustering on each of 
them. The features used in second pass clustering are offset and 
an inferred feature called extent. An extent is a series of related 
consecutive blocks on the storage device [7]. An extent is 
usually accessed by multiple IO accesses that have very tight 
temporal locality. For example, as shown in figure 4, we have 
2 IO accesses; both with size 10. First access happened at time 
t to offset 0. Second access time was at t + x to offset 10. If the 
difference in access time is much less than typical disk access 
latency (15 milliseconds) [8], they are highly likely to belong 
in the same extent. 
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Figure 4: extent example 

 We identified the possible extents by building a list of 
closely timed sequential IO accesses from our traces. Then we 
combine the identified extents with the same offset by taking 
an average of their sizes using time as weights (demonstrated 
below). 

accessed
 1 day ago

Size = a bytes

Accessed 5 hours ago
Size = b bytes

Accessed 
1 hour ago

Size = c bytes

Offset y

Combined extent
Size = (a+b+c)/2

 

We used the identified extents with their offsets and size as 
features for support vector regression (SVR) and locally 
weighted linear regression in attempt to learn the relationship 



between offset and extent size. However, as shown in figure 5 
and 6, the association between offset and extent size turns out 
to be decidedly non-linear and not easily distinguished. Both 
results had unacceptably large test error. We think this could be 
explained by the lack of intrinsic relationship between offset 
and extent size, as a file systems have no reason to group 
similarly sized extents together by offsets. Thus, we directly 
used our inferred extent map as a lookup table instead of trying 
to learned this feature through ML. 

  

Figure 5: locally weighted linear regression result 

 

Figure 6: SVR result 

 The goal of the second pass is to identify spatial locality. 
Figure 7 shows the result of second pass clustering applied on 
figure 3. 

 

Figure 7: second pass clustring applied on top of figure 3 

As shown above, each time slice is further divided into groups 
of spatially related accesses. The result is the model we used to 
predict the working set of an incoming access. The training for 
model creation and application of the model process is 
overlapped, similar to online machine learning. For example, 
we train for the first minute to construct a model. Apply this 
model in second minute, at the same time training this second 
minute to prepare a evolved model for third minute to use.
  

IV. METHODS 

Before we finalized on the 2-pass clustering ML approach, 
we explored using reinforcement learning to learn and manage 
the working sets. In MDP [9] context, we would define the 
state space to be all possible configurations of the address 
space. Each block in the address space can be in one of 3 
conditions: not accessed yet, in upper tier, or in lower tier. So, 
if there are N addressable blocks, there will be 3N states. The 
huge number of states is the major deterrent of MDP approach. 
While there might be more advanced MDP algorithm such as 
factored MDP proposed by Osband et al.[10] to resolve the 
large state space issue, formulating our state transition 
probabilities is another daunting task. We would need a huge 
number of traces to have sufficient number of accesses to hit 
all possible states frequently enough to construct the complete 
state transition  probability. 

We used mean shift clustering algorithm to decompose the 

training data into working sets along temporal and spatial 

dimensions. Mean shift is an iterative, non-parametric mode-

seeking algorithm. It was first presented in 1975 by Fukunaga 

and Hostetler [11]. Intuitively, the algorithm iteratively 

‘shifts’ each data point towards the direction with the highest 

density of neighboring data points. Thus, with each iteration, 

each data point will ‘shift’ closer and closer together towards a 

local cluster centroid that is marked by the highest data point 

density. All points associated with the same centroid belong in 

the same cluster. 

In more detail, mean shift uses kernel density estimation 

(KDE) [12] to estimate the underlying probability density 

function (PDF) of the data set. If (x1, x2… xn) are n 



independent and identically distributed data points sampled 

from an unknown distribution D in ℝd, KDE allows us to 

estimate the PDF of D using the kernel density estimator: 

 

where K(∙) is a kernel function and h is the bandwidth 

parameter which we will discussion more below. The values 

of x which satisfies  are then the modes of the 

density function, towards which we want to ‘shift’ the 

neighboring data points. This results in the update rule: 

 

which mean shift applies repeatedly to each data point until 

convergence. The bandwidth parameter is an important value 

to consider as it determines the resultant density function. If it 

is too small, we will have a bumpy density estimator which 

can result in too many little clusters. On the other hand, if the 

bandwidth is overly large, we will have a very smooth density 

estimator resulting in all points belonging in one giant cluster. 

V. EXPERIMENTS AND RESULTS 

We measured the effectiveness of our ML approach by 
simulating a two-tier storage system. The upper tier has limited 
capacity (e.g. cache or main memory) but better performance. 
The lower tier has unlimited capacity (e.g. disk) but slow 
access time. In the rest of the paper, we will use cache to refer 
to the upper tier. The goal is to have as much useful data 
residing in cache during the time of access without incurring 
large latency to retrieve it from lower tier. We quantify this by 
hit rate. 

 

The simulator implementing ML takes the dataset (IO traces) 
as input. Iterate through time ordered IO accesses in group of δ 
seconds. Run our clustering algorithm on the examples within 
each δ-second time interval group for 2 passes as described in 
section III to obtain a model of the most recent view of 
temporally and spatially related accesses. We will follow B. 
Wildani et al.’s convention and called these related accesses to 
be in one working set. These working sets are represented by 
an undirected graph in our simulator, with nodes representing 
offsets. Edges connect two nodes when the offsets they 
represent belong in the same working set. Each edge has an 
initial weight of ω, it is incremented by 1 whenever the two 
end node offsets appears in the same working set again, 
and are aged periodically by decrementing the weight by 1 
at rate ɣ. When the weight reaches zero, the edge and the 
any orphaned nodes are removed from the graph. This 
graph is updated after each δ-second interval training. As soon 
as an updated working set model is ready, the simulator applies 
it on new incoming accesses. If an incoming access is a part of 
a working set and not already in upper tier, the simulator will 
attempt to bring in the entire working set. If the upper tier does 
not have enough capacity, simulator will evict sufficient data in 
first-in first-out order to make room for the incoming working 

set. This is the testing phase of our ML approach. While the 
testing is in progress in one δ-second interval, we 
simultaneously train on this same interval to update our model 
for the next δ-second interval. 

To compare the performance of our ML based two-tier 
storage system, we constructed a second simulator 
implementing the same system with least recently used (LRU) 
cache as upper tier. LRU-based simulator caches just the 
incoming access if it is a miss, and evict enough least recently 
accessed data to make room for this new access.  

The simulators have several common parameters: input 
trace density (number of accesses within a fixed time period), 
input trace duration (time period over which all accesses in our 
dataset span), and upper tier capacity (how many blocks of data 
the upper tier storage device can hold).  Specific to ML-based 
simulator are the parameters of working set aging rate ɣ, time 
interval δ of each training/testing phase, and bandwidth 
parameter for  mean shift clustering as described in section IV.  

The aging rate ɣ and training time interval δ are selected 
through cross validation on our dataset.  Big δ means coarser 
grain level of training. If δ is too big, our dataset might include 
data points which are no longer temporally related. However, δ 
cannot be too small either because we might end up with too 
little data points to construct complete working sets. ɣ has to be 
large enough to retain enough useful working sets but not too 
large such that we bring in too much data and overflow the 
cache constantly.  

 After working set aging rate and training interval are 
decided, we naturally selected the longest duration trace our 
compute environment can handle. It is a 6 hour run from a 
Microsoft production server accessing 6 disks. We selected 
disk1’s trace in combination with a 10 megabyte cache size 
after experimenting with several different combinations of disk 
trace and cache size. The traces show that different disks can 
have very different IO access density. Given our limited 
amount of data point and compute power, we must select a 
combination that can yield meaningful result. For example, 
figure 8 shows that the hit rate using disk4 trace is too low in 
both LRU and ML simulators using the same size cache as 
disk1 trace because the IO density in disk4 is much greater 
than disk1. Since, we cannot enlarge the cache size to 
accommodate this larger density due to compute limitation, 
disk1 trace was selected as our dataset. 

 

Figure 8: MSNFS.2008-03-10.01-01.trace.csv (IO density) 



 Once disk1 trace is selected, we then choose an appropriate 
cache size, the minimal size able to fit ML’s working sets. 

 

Figure 9: MSNFS.2008-03-10.01-01.trace.csv (cache size) 

Figure 9 shows that 1 megabyte seems too small for our ML 
model to operate on the IO density of disk1 data. Even though 
it allows faster simlation time, 10 megabyte was selected 
instead. 

Figure 10 shows the simulation result of the 6-hour trace 
with the selected parameters described before. The result 
shows our ML-based two tier storage system has performance 
advantage over the LRU-based version.  

 

Figure 10: MSNFS.2008-03-10.01-01 ~ 10.12-51.trace.csv 

Our ML simulator has an average read hit rate of 95.1%, while 
LRU’s average read hit is 75.2%. This means our ML approach 
has 26.4% higher read hit rate. On the write side, ML’s 
performance (54.9% write hit rate) is significantly better than 
LRU’s (0.178%). The overall advantage of ML over LRU 
demonstrates our working set model is effective. Refering back 
to figure 3, we can see the amount of data been accessed in a 
temporal slice is more than the upper tier’s capacity. In 
addition, the accesses within a time slice are in multiple spatial 
locality clusters. The caches will not be able to hold all the 
working sets. Thus, some of the older accesses are evicted 
before we advance to the next time slice with similar access 
pattern. In LRU, each “revisit” of an evicted offset results in a 
miss. With ML, the entire working set of the evicted offset are 
brought in together. Any subsequent accesses to the offsets 

within this same working set will result in hits. The drastic 
advantage of ML over LRU on the write access front is 
surprising. More investigation is needed to confirm if it is a 
phenomenon specific to the Miscrosoft production server trace 
or there is a more fundamental reason behind it. 

VI. CONCLUSION AND FUTURE WORK 

Our work shows that we can distinguish effective working 
sets using spatiotemporal features and ML clustering 
algorithms such as mean shift. Our experimental data further 
shows that a working set oriented caching policy out performs 
traditional LRU approach in both read and write cache hits. We 
believe this is the result of file system design which keeps 
related data close spatially and our extraction and usage of 
extent information.  

We used mean shift clustering instead of k-means 

clustering for the following reasons. First, we believe our data 

pattern of sporadic timed but spatial close IOs are better 

modeled by a mode-seeking algorithm. Second, we want the 

algorithm to find natural clustering of working sets through 

time instead of always using a rigid parameter number. 

Finally, we don’t want to constraint our cluster shapes to be 

spherical or elliptical. However, this comes at a cost of greater 

computing complexity. 

While we were successful with applying ML-clustering 
techniques. We also run into limit on what our ML tools can be 
used to for. The lack of intrinsic relationship prevented us from 
using SVR/locally weighted linear regression to predict extent 
size from an access offset. 

Our ML-based simulation has very simple eviction policy 
chosen for the ease of simulator’s implementation. As an 
extension, we can design a more sophisticated eviction policy 
to improve performance. Other future work includes extending 
the two tier into multi-tier storage system to more accurately 
reflect modern data center architectures. We can also 
experiment with longer traces as well as traces from other 
types of systems such as Linux servers or a single user PC. We 
might find single user trace yielding better result than what we 
have shown because its access pattern maybe more 
“predictable” than multi-tenant systems. Different types of 
traces will also help with the investigation of why we observed 
drastic better write hit rate of ML over LRU approach as 
shown in section V. 
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