

Intelligent storage system with machine learning

Amy Yen

Department of Electrical Engineering

Stanford University

Stanford, U.S.A.

htyen@stanford.edu

I. INTRODUCTION

Storage system is the key component in big data. As data
size grows, we need to scale storage system efficiently.
Majority of today’s storage devices present a simple linear
block address space to the operating system. This simplistic
addressing scheme treats each block address as a generic
bucket of opaque data. While this architecture allows the
operating system to easily abstract the stored data for upper
layer application to use, it offers the devices no insight into the
content of the data nor the relationship among data at various
addresses. Enabling the devices to intelligently assign data
storage location and plan data movement across devices in
different tiers of the entire storage system can optimize the
system’s performance and cost.

This paper explores using machine learning (ML) to
construct a model to design a storage system to achieve
minimum access latency at lowest cost. The ML model will
coordinate interactions across different devices in the system
and within each device, it will direct the location to store the
data. The input to our ML model is IO trace file. The trace file
lists all IO activities to a storage device. With each IO record a
training example, our data set consists of all IO records from
the input trace file. They are fed into ML-clustering algorithm
with access time and offset as features. Outputs are clusters of
IO records indicating which accesses were accessed with
temporal and spatial locality.

II. RELATED WORK

A. Caching and prefetching

A storage system consists of tiers of different devices with

varying cost and performance. Top tier is the smallest

capacity, fastest, and most expensive. Fully utilizing the top

tier is the key to minimize latency while keeping cost down.

Kroeger et al. proposed caching frequently accessed data and

prefetch data to be accessed in near future into the top tier [1].

B. Data sementic aware devices

Physical devices that understand the specific applications

issuing IO requests to them can organize data to minimize

number of accesses and each access’ latency. Sivathaunu et al.

proposed database aware storage [2]. The storage system

snooped write-head log of the data base system to accurately

infer the evolving access pattern. It also gathered statics such

as access time of queries, correlation between table/indexes,

and number of queries on tables over a duration of time to

devise caching scheme.

Arpacii-Dusseau et al. applied similar idea to construct a

file system aware disk, which utilized similar statistics as

proposed by Sivathaunu et al. and directory/inode structure

specific to file system to infer applications’ view of data

blocks [3].

More transparency between upper level application and

physical devices is the most direct method to construct an

intelligent storage system, but it incurs significant costs:

complication in design and extra hardware overhead.

C. Device characteristics aware applications

This approaches tackles the opacity issue between
application and device from the opposite direction as described
in section B. Upper level applications are developed with
assumptions on specific hardware’s behaviors. Schindler et al.
proposed embedding knowledge of disk’s physical geometry
information in applications’ algorithm to align related accesses
within a disk track to minimize access latency [4]. This works
well until the hardware design obsoletes.

D. Machine learning approach

We can apply machine learning to allow storage system to

infer data semantic without the transparency between higher

level application and physical devices as described in section

B. Wildani et al. applied k-means on IO accesses history to

identify access upper level applications’ working sets [5]. Our

proposal also uses a clustering algorithm to learn applications’

access pattern, but incorporates an additional inferred feature.

We also explored multiple runs of clustering algorithm on the

same data set to learn time domain and spatial domain

separately.

III. DATASET AND FEATURES

Our dataset consists of ~2 million IO records collected by
Microsoft on their MSN Storage file server over a duration of 6
hours [6]. Each IO record describes an IO access by its time
issued, type (read or write), location addressed (offset), data
size, and retrieval latency. The raw trace files include accesses
to multiple disks. The time, offset, and size are in units of
microseconds, bytes respectively. Preprocessing separates IOs
from different disks to different datasets and converts the
features to storage standard format/units. Offset and size are

transformed from bytes into number of blocks. A block is the
smallest addressable unit for any block device, such as SSD
and disk. Industry standard block size is 512 bytes. Access
time given in microseconds is converted to milliseconds to
prevent overflow of representation in signed 32-bit data types.
This is acceptable because a typical IO access is on the order of
milliseconds [8]. Figure 1 plots the read accesses and figure 2
plots the write accesses captured during the first 10 minutes of
disk0 IO trace.

Figure 1: write accesses of first 10 minutes of disk0

Figure 2: read accesses of first 10 minutes of disk0

Based on the result of B. Wildani et al., we selected access
time and offset as features for our first pass clustering run. This
pass of clustering is made to bias towards time domain (y-axis
direction) grouping by dividing offset with a factor α. Figure 3
shows an example clustering output. Data points in the same
color are in one cluster. The stars indicate the cluster centroids.
The output of this first pass clustering is showing what the ML
algorithm learned as an “epoch” duration. An epoch defines the
unit of time during which temporally related accesses took
place. The duration of an epoch evolves as time progresses and
applications’ access pattern changes.

Figure 3: first pass time centric clustering result of first 10-
minute trace from disk1

 Once we divided the time domain into slices of epochs, we
iterate through all the epochs and run clustering on each of
them. The features used in second pass clustering are offset and
an inferred feature called extent. An extent is a series of related
consecutive blocks on the storage device [7]. An extent is
usually accessed by multiple IO accesses that have very tight
temporal locality. For example, as shown in figure 4, we have
2 IO accesses; both with size 10. First access happened at time
t to offset 0. Second access time was at t + x to offset 10. If the
difference in access time is much less than typical disk access
latency (15 milliseconds) [8], they are highly likely to belong
in the same extent.

9 10 190

@time t @time t+x

Figure 4: extent example

 We identified the possible extents by building a list of
closely timed sequential IO accesses from our traces. Then we
combine the identified extents with the same offset by taking
an average of their sizes using time as weights (demonstrated
below).

accessed
 1 day ago

Size = a bytes

Accessed 5 hours ago
Size = b bytes

Accessed
1 hour ago

Size = c bytes

Offset y

Combined extent
Size = (a+b+c)/2

We used the identified extents with their offsets and size as
features for support vector regression (SVR) and locally
weighted linear regression in attempt to learn the relationship

between offset and extent size. However, as shown in figure 5
and 6, the association between offset and extent size turns out
to be decidedly non-linear and not easily distinguished. Both
results had unacceptably large test error. We think this could be
explained by the lack of intrinsic relationship between offset
and extent size, as a file systems have no reason to group
similarly sized extents together by offsets. Thus, we directly
used our inferred extent map as a lookup table instead of trying
to learned this feature through ML.

Figure 5: locally weighted linear regression result

Figure 6: SVR result

 The goal of the second pass is to identify spatial locality.
Figure 7 shows the result of second pass clustering applied on
figure 3.

Figure 7: second pass clustring applied on top of figure 3

As shown above, each time slice is further divided into groups
of spatially related accesses. The result is the model we used to
predict the working set of an incoming access. The training for
model creation and application of the model process is
overlapped, similar to online machine learning. For example,
we train for the first minute to construct a model. Apply this
model in second minute, at the same time training this second
minute to prepare a evolved model for third minute to use.

IV. METHODS

Before we finalized on the 2-pass clustering ML approach,
we explored using reinforcement learning to learn and manage
the working sets. In MDP [9] context, we would define the
state space to be all possible configurations of the address
space. Each block in the address space can be in one of 3
conditions: not accessed yet, in upper tier, or in lower tier. So,
if there are N addressable blocks, there will be 3N states. The
huge number of states is the major deterrent of MDP approach.
While there might be more advanced MDP algorithm such as
factored MDP proposed by Osband et al.[10] to resolve the
large state space issue, formulating our state transition
probabilities is another daunting task. We would need a huge
number of traces to have sufficient number of accesses to hit
all possible states frequently enough to construct the complete
state transition probability.

We used mean shift clustering algorithm to decompose the

training data into working sets along temporal and spatial

dimensions. Mean shift is an iterative, non-parametric mode-

seeking algorithm. It was first presented in 1975 by Fukunaga

and Hostetler [11]. Intuitively, the algorithm iteratively

‘shifts’ each data point towards the direction with the highest

density of neighboring data points. Thus, with each iteration,

each data point will ‘shift’ closer and closer together towards a

local cluster centroid that is marked by the highest data point

density. All points associated with the same centroid belong in

the same cluster.

In more detail, mean shift uses kernel density estimation

(KDE) [12] to estimate the underlying probability density

function (PDF) of the data set. If (x1, x2… xn) are n

independent and identically distributed data points sampled

from an unknown distribution D in ℝd, KDE allows us to

estimate the PDF of D using the kernel density estimator:

where K(∙) is a kernel function and h is the bandwidth

parameter which we will discussion more below. The values

of x which satisfies are then the modes of the

density function, towards which we want to ‘shift’ the

neighboring data points. This results in the update rule:

which mean shift applies repeatedly to each data point until

convergence. The bandwidth parameter is an important value

to consider as it determines the resultant density function. If it

is too small, we will have a bumpy density estimator which

can result in too many little clusters. On the other hand, if the

bandwidth is overly large, we will have a very smooth density

estimator resulting in all points belonging in one giant cluster.

V. EXPERIMENTS AND RESULTS

We measured the effectiveness of our ML approach by
simulating a two-tier storage system. The upper tier has limited
capacity (e.g. cache or main memory) but better performance.
The lower tier has unlimited capacity (e.g. disk) but slow
access time. In the rest of the paper, we will use cache to refer
to the upper tier. The goal is to have as much useful data
residing in cache during the time of access without incurring
large latency to retrieve it from lower tier. We quantify this by
hit rate.

The simulator implementing ML takes the dataset (IO traces)
as input. Iterate through time ordered IO accesses in group of δ
seconds. Run our clustering algorithm on the examples within
each δ-second time interval group for 2 passes as described in
section III to obtain a model of the most recent view of
temporally and spatially related accesses. We will follow B.
Wildani et al.’s convention and called these related accesses to
be in one working set. These working sets are represented by
an undirected graph in our simulator, with nodes representing
offsets. Edges connect two nodes when the offsets they
represent belong in the same working set. Each edge has an
initial weight of ω, it is incremented by 1 whenever the two
end node offsets appears in the same working set again,
and are aged periodically by decrementing the weight by 1
at rate ɣ. When the weight reaches zero, the edge and the
any orphaned nodes are removed from the graph. This
graph is updated after each δ-second interval training. As soon
as an updated working set model is ready, the simulator applies
it on new incoming accesses. If an incoming access is a part of
a working set and not already in upper tier, the simulator will
attempt to bring in the entire working set. If the upper tier does
not have enough capacity, simulator will evict sufficient data in
first-in first-out order to make room for the incoming working

set. This is the testing phase of our ML approach. While the
testing is in progress in one δ-second interval, we
simultaneously train on this same interval to update our model
for the next δ-second interval.

To compare the performance of our ML based two-tier
storage system, we constructed a second simulator
implementing the same system with least recently used (LRU)
cache as upper tier. LRU-based simulator caches just the
incoming access if it is a miss, and evict enough least recently
accessed data to make room for this new access.

The simulators have several common parameters: input
trace density (number of accesses within a fixed time period),
input trace duration (time period over which all accesses in our
dataset span), and upper tier capacity (how many blocks of data
the upper tier storage device can hold). Specific to ML-based
simulator are the parameters of working set aging rate ɣ, time
interval δ of each training/testing phase, and bandwidth
parameter for mean shift clustering as described in section IV.

The aging rate ɣ and training time interval δ are selected
through cross validation on our dataset. Big δ means coarser
grain level of training. If δ is too big, our dataset might include
data points which are no longer temporally related. However, δ
cannot be too small either because we might end up with too
little data points to construct complete working sets. ɣ has to be
large enough to retain enough useful working sets but not too
large such that we bring in too much data and overflow the
cache constantly.

 After working set aging rate and training interval are
decided, we naturally selected the longest duration trace our
compute environment can handle. It is a 6 hour run from a
Microsoft production server accessing 6 disks. We selected
disk1’s trace in combination with a 10 megabyte cache size
after experimenting with several different combinations of disk
trace and cache size. The traces show that different disks can
have very different IO access density. Given our limited
amount of data point and compute power, we must select a
combination that can yield meaningful result. For example,
figure 8 shows that the hit rate using disk4 trace is too low in
both LRU and ML simulators using the same size cache as
disk1 trace because the IO density in disk4 is much greater
than disk1. Since, we cannot enlarge the cache size to
accommodate this larger density due to compute limitation,
disk1 trace was selected as our dataset.

Figure 8: MSNFS.2008-03-10.01-01.trace.csv (IO density)

 Once disk1 trace is selected, we then choose an appropriate
cache size, the minimal size able to fit ML’s working sets.

Figure 9: MSNFS.2008-03-10.01-01.trace.csv (cache size)

Figure 9 shows that 1 megabyte seems too small for our ML
model to operate on the IO density of disk1 data. Even though
it allows faster simlation time, 10 megabyte was selected
instead.

Figure 10 shows the simulation result of the 6-hour trace
with the selected parameters described before. The result
shows our ML-based two tier storage system has performance
advantage over the LRU-based version.

Figure 10: MSNFS.2008-03-10.01-01 ~ 10.12-51.trace.csv

Our ML simulator has an average read hit rate of 95.1%, while
LRU’s average read hit is 75.2%. This means our ML approach
has 26.4% higher read hit rate. On the write side, ML’s
performance (54.9% write hit rate) is significantly better than
LRU’s (0.178%). The overall advantage of ML over LRU
demonstrates our working set model is effective. Refering back
to figure 3, we can see the amount of data been accessed in a
temporal slice is more than the upper tier’s capacity. In
addition, the accesses within a time slice are in multiple spatial
locality clusters. The caches will not be able to hold all the
working sets. Thus, some of the older accesses are evicted
before we advance to the next time slice with similar access
pattern. In LRU, each “revisit” of an evicted offset results in a
miss. With ML, the entire working set of the evicted offset are
brought in together. Any subsequent accesses to the offsets

within this same working set will result in hits. The drastic
advantage of ML over LRU on the write access front is
surprising. More investigation is needed to confirm if it is a
phenomenon specific to the Miscrosoft production server trace
or there is a more fundamental reason behind it.

VI. CONCLUSION AND FUTURE WORK

Our work shows that we can distinguish effective working
sets using spatiotemporal features and ML clustering
algorithms such as mean shift. Our experimental data further
shows that a working set oriented caching policy out performs
traditional LRU approach in both read and write cache hits. We
believe this is the result of file system design which keeps
related data close spatially and our extraction and usage of
extent information.

We used mean shift clustering instead of k-means

clustering for the following reasons. First, we believe our data

pattern of sporadic timed but spatial close IOs are better

modeled by a mode-seeking algorithm. Second, we want the

algorithm to find natural clustering of working sets through

time instead of always using a rigid parameter number.

Finally, we don’t want to constraint our cluster shapes to be

spherical or elliptical. However, this comes at a cost of greater

computing complexity.

While we were successful with applying ML-clustering
techniques. We also run into limit on what our ML tools can be
used to for. The lack of intrinsic relationship prevented us from
using SVR/locally weighted linear regression to predict extent
size from an access offset.

Our ML-based simulation has very simple eviction policy
chosen for the ease of simulator’s implementation. As an
extension, we can design a more sophisticated eviction policy
to improve performance. Other future work includes extending
the two tier into multi-tier storage system to more accurately
reflect modern data center architectures. We can also
experiment with longer traces as well as traces from other
types of systems such as Linux servers or a single user PC. We
might find single user trace yielding better result than what we
have shown because its access pattern maybe more
“predictable” than multi-tenant systems. Different types of
traces will also help with the investigation of why we observed
drastic better write hit rate of ML over LRU approach as
shown in section V.

VII. REFERENCES

[1] T.M. Kroeger and D.D.E. Long. "Predicting file system

actions from prior events," in Proceedings of the 1996

annual conference on USENIX Annual Technical

Conference, 1996.

[2] M. Sivathanu, L. Bairavasundaram, A. Dusseau, and R.

Dusseau. "Database-Aware Semantically-Smart Storage,"

in USENIX Symposium on File and Storage, 2005.

[3] A.C. Arpaci-Dusseau, R.H. Arpaci-Dusseau, L.N.

Bairavasundaram, T.E. Denehy, F.I. Popovici,

V. Prabhakaran, and M. Sivathanu. "Semantically-Smart

Disk Systems," in Second USENIX Symposium on File

and Storage (FAST'03), 2003.

[4] J. Schindler, J.L. Griffin, C.R. Lumb, and G.R.

Ganger. Track-aligned extents: matching access

patterns to disk drive characteristics. In Conference

on File and Storage Technologies, 2002.

[5] A. Wildani, E. Miller, and L. Ward. "Efficiently

identifying working sets in block I/O streams," in

SYSTOR '11 Proceedings of the 4th Annual International

Conference on Systems and Storage, 2011.

[6] "Microsoft production Server Traces," [Online].

Available: http://iotta.snia.org/tracetypes/3.

[7] Wikipedia, "Extent (file systems)," [Online]. Available:

https://en.wikipedia.org/wiki/Extent_(file_systems).

[8] Wikipedia, “,” [Online]. Available:

https://en.wikipedia.org/wiki/

Hard_disk_drive_performance_characteristics#Seek_time

[9] Andrew Ng, ‘Reinforcement Learning and Control’,

Stanford University, 2016.

[10] Ian Osband and Benjamin Van Roy. “Near-optimal

Reinforcement Learning in Factored MDPs,” in

Advances in Neural Information Processing Systems 27

(NIPS), 2014.

[11] K. Fukunaga and L. Hostetler. “The estimation of the

gradient of a density function, with applications in pattern

recognition,” in IEEE Transactions on Information

Theory (Volume: 21, Issue: 1), Jan 1975.

[12] Emanuel Parzen. “On Estimation of a Probability Density

Function and Mode,” in The Annals of Mathematical

Statistics Vol. 33, No. 3, Sep., 1962.

http://iotta.snia.org/tracetypes/3
https://en.wikipedia.org/wiki/
http://papers.nips.cc/book/advances-in-neural-information-processing-systems-27-2014
http://papers.nips.cc/book/advances-in-neural-information-processing-systems-27-2014

