
Beating the Bookies: Predicting the Outcome of Soccer Games

Steffen Smolka SMOLKA@STANFORD.EDU

Stanford University, USA

1. Introduction
Soccer is the most popular sport in the world. With an
estimated 3.5 billion fans around the world, it is enjoyed
by nearly half the world’s population. My project asks the
following question: Is it possible to predict the outcome
of soccer games with high accuracy automatically? This
questions is not merely of interest to fans who must satisfy
their curiosity, but it is also of significant economical rele-
vance. A BBC article from 2013 (BBC) estimates that the
soccer betting market is worth between 500 and 700 billion
USD a year.

History has shown again and again that soccer prediction
can be hard. Leicester City stunned the world in 2016 when
winning the English Premier league season 2015/16 after
just getting promoted from the second league the year before.
Figure 1 shows that this came as a complete surprise not only
to fans, but also the major betting companies: Ladbrokes
estimated the chance of this event to 1 in 5000 before the
season. In the very same year, Portugal surprisingly won
the Euro Cup.

This project considers soccer game prediction as a ternary
classification problem. The goal is to predict the outcome
y(i) ∈ {+1, 0,−1} of a game i given some feature vector
x(i). Here the values +1, 0 and−1 encode the three possible
outcomes Home Win, Draw, and Away Win, respectively.
I focus on games of the English Premier League (EPL)—
the most popular soccer league in the world—and take a
minimalistic approach: for a game i between home team
h(i) and away team a(i), I derive features x(i) using nothing
but the final scores of previous games involving either of
the teams. I do not include the identities of h(i) and a(i)

as features, deciding instead to base forecasts purely on
performance.

2. Related Work
Previous work in this area can be divided into goal-based
and result-based approaches. While the former try to pre-
dict the goals scored and conceded by each team, the latter
predict the win-draw-loose outcome directly. My own work
falls into the latter category. Goddard (Goddard, 2005) com-
pares the two approaches and concludes they are of similar

predictive power, but suggest that hybrid approaches may
perform best.

The works of Rue and Salvesen (Rue & Salvesen, 2000)
and Karlis et. al (Karlis & Ntzoufras, 2003) are goal-based,
using Poisson distributions to model the number of goals
scored by a team. Similar to my work, they use attack and
defense parameters; but in contrast to my work, their models
are team-dependent. Unfortunately, neither of the papers
report how many outcomes they can predict correctly. In
particular, the focus in (Karlis & Ntzoufras, 2003) is mainly
on how well the model can fit existing data.

The PhD thesis of Constantinou (Constantinou et al., 2012)
is result-based and uses a Bayesian network based on team
strength, form, psychologial impact, and fatigue. The thesis
describes a model based purely on objective data, and a
model that incorporates subjective estimates from a human
expert. It concludes that the accuracy of the purely objective
forecasts is significantly inferior to bookmakers forecasts,
while the subjective model is on par.

(Joseph et al., 2006) is also result-based but take a very dif-
ferent approach: it compares the performance of an expert-
constructed Bayesian network to the performance of sev-
eral models trained by machine learning algorithms. They
conclude that the expert BN is generally superior to the
automatic techniques.

3. Data Set and Computed Features
Although there seems to be an abundance of data on soccer
games available online at first look, obtaining a data set
amenable to machine learning proved challenging. The
public data sets I identified in my project proposal (EUS;
His) are either incomplete and erroneous, or contain only
the most basic information: a list of games with their final
scores. While very detailed databases of soccer statistics
exist, they are maintained by commercial providers such as
opta1, and access is granted only at high charges.

After spending a significant amount of time looking for
data sets with sophisticated features, I had to give up on
my initial idea to use information such as the freshness of a

1http://www.optasports.com/

http://www.optasports.com/


Beating the Bookies

Figure 1. Leicester’s chance of winning the Premier League season
2015/16, as predicted by major betting company Ladbrokes.

team (measured by the time since the last game), the number
of injured players, or the value of a team’s squad. Instead I
use only features derived from the final scores of a team’s
previous games. I extracted this raw data from csv files
provided by (His) that contain the final results of over 6500
Premier League games between 1993 and 2016.

A first attempt. As a first attempt, I computed the follow-
ing features, both for the home team and the away team, for
each game:

• #goals scored in each of the last w home games

• #goals scored in each of the last w away games

• #goals conceived in each of the last w home games

• #goals conceived in each of the last w away games

Using a windows size of w = 3, this yields 8w features
for each game (discarding the initial games for which no
data is available). Training a SVM using these features,
I initially obtained a model with extremely high accuracy.
Unfortunately, this turned out to be due to a poor validation
approach: I trained the model on the first 85% of the games
of a single season, and then tested it against the last 15% of
the season. I think this may suggest that the last games of a
season are much more predictable than other games.

After moving to 10-fold cross validation and using the
games of all 23 seasons, I saw very poor predictive per-
formance using these features. I thus moved to a different
set of features, which I will describe next.

3.1. Form coefficients

The idea behind my final set of features was to compile the
previous results of a team into performance coefficients that
are meant to measure general team form, offensive form,
and defensive form. All coefficient are initialized to 1 at
the beginning of the season, and then get updated based on
performance, so that a higher coefficient indicates better
form. When updating the coefficients, we take the current
form of the opponent team into account: beating a strong
opponent gives more points than beating a weak opponent.

For illustration, let us define the general form coefficient
formally. Associated with each team t and time τ is a score
sτt . The time τ indicates the number of games played by
team t in the current season. Initially we set

s0t = 1 (∀t) (1)

Now suppose that at time τ > 0, team t beats team u. Then
the coefficients of the teams get updated as follows:

sτt = sτ−1t + γsτ−1u (2)

sτu = sτ−1u − γsτ−1u (3)



Beating the Bookies

Intuitively, team t “steals” a fraction 0 < γ < 1 of team
u’s score. Since this fraction is proportional to u’s score,
beating a good team (with a high score) gives more points
than beating a weak team (with a low score). The parameter
γ can be understood as a discount factor. It controls how
quickly the fitness score reacts to changes in performance:
if τ is close to 1, then the fitness score captures mostly the
performance in very recent games (and a single lost game
will lead to a fitness score close to 0); if on the other hand
γ is close to 0, then the fitness score changes only slowly
between games and it captures the long term performance
of a team.

If team t and team u tie at time τ , we update the coefficients
as follows:

sτt = sτ−1t − γ(sτ−1t − sτ−1u ) (4)

sτu = sτ−1u − γ(sτ−1t − sτ−1u ) (5)

That is, the coefficient of the stronger team will decrease,
and the coefficient of the weaker team will increase. The
rate of change is proportional to the difference in strength
between the teams, so that tying against a much stronger
team gives more points than tying against a team of similar
strength. Importantly, the two coefficients approach equal
values in the limit. This makes intuitive sense, since teams
that repeatedly tie against each other are likely to be of
similar strength.

Note that the coefficients are always non-negative and that
they are always normalized in the following sense:∑

t

sτt = T (∀τ) (6)

where T denotes the number of teams. This follows directly
from equations (1)-(5) and also implies that

0 ≤ sτt ≤ T (7)

Empirically, I observed that invariants (6) and (7) are cru-
cial for the performance of my models. In reflection, this
is obvious: without the invariants, the score sτt would mea-
sure only relative fitness, i.e. its value would be completely
meaningless without comparing it to a second score sτu of a
different team at the same time. But with the invariant, sτt
turns into an absolute fitness measure that is meaningful in
itself:

Fact 1 If a team has fitness score n = sτt , then it is in the
top bTn c-quantile at time τ .

Similar to the general fitness coefficient just discussed, I
also defined offensive fitness and defensive fitness coeffi-
cients that capture how likely a team is to score or conceit
a goal. They are calculated not based on the outcome of
a game, but rather on the number of goals scored by each

side in a game: scoring against a defensively-strong team
is interpreted as a sign of a strong attack, and conversely
keeping a clean-sheet against an offensively-strong team is
a sign of a strong defense. Interestingly, invariants (6) and
(7) have to be slightly updated: now the offensive and defen-
sive coefficients together sum up to 2T , accounting for the
possibility that there may be no goals (or no clean-sheets)
at all during a season.

Feature Vector. My final feature vector was established
through experimentation. It includes two instantiations of
the general form coefficient with discount factors γ = 1

7 and
γ = 1

3 , respectively, capturing both high frequency events
and low frequency events, i.e. long term form and recent
form. Additionally I include the offensive and defensive
form coefficients with γ = 1

7 .

4. Methods.
Models. I used three models: a self-implemented SVM,
using stochastic gradient descent for training; a lib-
svm(Chang & Lin, 2011) implementation of SVM; and
a scikit-learn implementation of a neural network. For the
SVMs, experimentation established the radial basis kernel as
best-suited. The parameters for the latter two models were
optimized using grid search and 10-fold cross validation;
the parameters of the first model were hand-tuned.

Binary Classification. Besides the ternary classification
problem, I also considered a simplified classification prob-
lem by discarding all games that ended in a tie. Formally,
this can be understood as finding a model for the binary
conditional random variable

y|x, y 6= 0

instead of the ternary random variable

y|x

Obviously, the binary classification problem is much easier
than the ternary classification problem: random guessing
already gives 50% accuracy in the binary case, but only 33%
accuracy in the binary case.

Multinomial Classification. Both the neural network and
the SVM libraries supported multinomial classification out
of the box. The neural network uses soft-max function
to achieve this. libsvm uses what is called the one-vs-one
reduction: it trains one binary classifier for each pair of class
labels. At prediction time, each of the classifiers is querried
and the class with the highest number of “votes” wins.

For my custom SVM implementation, I used an adhoc tech-
nique based on the idea that ties occur in games in which



Beating the Bookies

samples % win % tie % loss % predicted
34 73.5 0.0 26.5 82.0

Table 1. test set with wins and losses only – ties filtered out

samples % win % tie % loss % predicted
48 52.1 33.3 14.6 72.0

Table 2. test set with home wins, ties, and home losses

neither a win nor a loss is very likely. Although the SVM
model does not output probabilities, we can interpret the
distance of a sample from the separating hyperplane as
the confidence of the model: games far on one side are
likely wins, games far on the the other side are likely losses.
Games somewhat in the middle, i.e. within some thresh-
old δ of the hyperplane, can then be interpreted as ties.
Some experimentation established δ = 0.25 as a reasonable
threshold.

5. Experiments and Results
Initial Results. As mentioned in Section 2, I initially
achieved very high accuracies using the features described
under “A first attempt.” I trained a custom SVM with RBF
kernel using stochastic gradient descent. I used the data
from season 2016-17 only, containing 320 games (32 for
each of the 20 teams) after discarding the first games as
described in the Section 2. I divided the samples into train-
ing and test data using a 85%/15% split. Since the models
were fitted using stochastic gradient descent, Tables 1 and 2
report the average prediction rate over 20 iterations.

Note that I did not split the data set randomly into training
and test set, but instead used the first 85% games of the
season for training and then the last 15% games for testing.
The same model achieved quite poor performance when
moving to larger data sets and 10-fold cross validation. In
fact the performance was so bad that I started investigating
better features, eventually designing the fitness coefficients
described in Section 3.1.

Nonetheless these results are interesting: they suggest that
maybe the last games of a season are significantly easier to
predict than other games.

Rigorous Results. To establish higher confidence in my
results, I moved to 10-folded cross validation (where the
10 sets are chosen uniformly at random). Unfortunately,
my initial features performed very poorly in this setting,
sometimes predicting games less accurately than the naive
strategy that always predicts a home win (the most likely
event). I was able to improve performance dramatically
by using the fitness coefficients described in Section 3.1
as features. To my surprise, all three models were quite

training acc. 10-fold cv acc.
home wins† 62% 62%

libsvm 67% 65%
custom SVM 90% 67%

neural net 85% 73%

Table 3. Average accuracy for binary classification.

training acc. 10-fold cv acc.
home wins† 46% 46%

libsvm 49% 48%
custom SVM 87% 53%

neural net 58% 50%

Table 4. Average accuracy for ternary classification.

sensitive to adding “bad” features.

The accuracy (i.e., average prediction rate) of the three
models for the binary and the ternary classification problems
are shown in Tables 3 and 4. The neural network performed
best in the binary case, predicting an average 72% of games
in the test sets correctly. This is 9% better than naively
always predicting a win, but also %10 worse than the result
from my initial experiment (Tabel 1). Libsvm was only able
to achieve a 3% edge over the naive strategy, my custom
SVM achieved a 5% edge.

In the ternary case, the custom SVM performed best, predict-
ing an average of 53% of games (in the tests sets) correctly.
This is 7% better than always predicting a home win. On
the training set, the custom SVM achieved 87% accuracy,
suggesting some overfitting.

Remarkably, my custom SVM implementation performed
better than libsvm in both cases. This might be due to the
fact that my implementation used a randomized algorithm,
namely stochastic gradient descent, while libsvm uses a
deterministic algorithm.

6. Conclusion
My project demonstrates that it is possible to predict the
outcome of soccer games—win, tie, or loss—with over 50%
accuracy automatically. There is lots of room for improve-
ment. My project used nothing but the outcome of previous
games for prediction, and I expect more sophisticated fea-
tures such as the fatigue of a team can enable predictions
with an accuracy beyond 60%. It would be interesting to
combine my result-based model with a goal-based model
(using Poisson distributions, for example) to obtain an even
more accurate hybrid model, as suggested by (Goddard,
2005).

Another direction for future work is to investigate algorithms



Beating the Bookies

that can place bets based on the models’ predictions and
some measure of confidence. My data set contains historical
betting odds that can be used for evaluating if such a system
is able to generate profits.

I also discovered that it seems to be much easier to predict
the last games of a season. In particular, I achieved over
72% accuracy for predicting the final games of the 2015/16
EPL season. This deserves further investigation, and my
have important implications for placing bets.

References
Football betting - the global gambling industry worth

billions. http://www.bbc.com/sport/
football/24354124. Accessed: 2016-12-15.
Published: 2016-10-3.

European soccer database. https://www.kaggle.
com/hugomathien/soccer. Accessed: 2016-10-
21.

Historical football results and betting odds data. http:
//www.football-data.co.uk/data.php. Ac-
cessed: 2016-10-22.

Chang, Chih-Chung and Lin, Chih-Jen. Libsvm: a library
for support vector machines. ACM Transactions on Intel-
ligent Systems and Technology (TIST), 2(3):27, 2011.

Constantinou, Anthony C, Fenton, Norman E, and Neil, Mar-
tin. pi-football: A bayesian network model for forecasting
association football match outcomes. Knowledge-Based
Systems, 36:322–339, 2012.

Goddard, John. Regression models for forecasting goals
and match results in association football. International
Journal of forecasting, 21(2):331–340, 2005.

Joseph, A, Fenton, Norman E, and Neil, Martin. Predicting
football results using bayesian nets and other machine
learning techniques. Knowledge-Based Systems, 19(7):
544–553, 2006.

Karlis, Dimitris and Ntzoufras, Ioannis. Analysis of sports
data by using bivariate poisson models. Journal of the
Royal Statistical Society: Series D (The Statistician), 52
(3):381–393, 2003.

Rue, Havard and Salvesen, Oyvind. Prediction and retro-
spective analysis of soccer matches in a league. Journal of
the Royal Statistical Society: Series D (The Statistician),
49(3):399–418, 2000.

http://www.bbc.com/sport/football/24354124
http://www.bbc.com/sport/football/24354124
https://www.kaggle.com/hugomathien/soccer
https://www.kaggle.com/hugomathien/soccer
http://www.football-data.co.uk/data.php
http://www.football-data.co.uk/data.php

	Introduction
	Related Work
	Data Set and Computed Features
	Form coefficients

	Methods.
	Experiments and Results
	Conclusion

