
Guqin Notation and Music Style Recognition

Chen Shi
Stanford University

pupushi@stanford.edu

Abstract— motivated by the Convolutional Neural
Networks about digit recognition and ImageNet deep
neural network by Krizhevsky et al. [1], I did this project
on Guqin notation recognition, which classified reduced
characters with positioned 1-10 (一 -十) in handwritten
Chinese characters and translated to other music
recording scores. I built a four-layer convolutional neural
network using adjusted CaffeNet CNN [2] model to
classify 8000 images from handwritten Guqin notations
into 10 distinct classes. The network achieves a test set
error rate of 15.7%. The model is trained using dropout on
the fully-connected layers and performed PCA with
assigned randomized variable for weight decay to reduce
overfitting.

Keywords—CNN; Guqin;Notation; CaffeNet; Text
detection; Handwritten character recognition; Convolutional
neural networks;

I. INTRODUCTION
Guqin is a plucked seven-string instrument with a very long

history of more than 2500 years). Guqin music scores are
written since the late Tang Dynasty in a system known as
“Jianzi-pu (減字譜, Ch’ian Ts’u P’u in Wade-Giles, literally
reduced ideograph notation”). The system consists of
compiling a series of left and right hand movement syntaxes
into one Chinese-like character

In each of the character, there are three main categories:
actual notation (正字, showing the string), accompaniment
notation (旁字, showing the left-hand position) and appending
notation (旁註, showing the right-hand movement). Actual
notation records the “proper tones” produced by obvious
plucking, while accompaniment notation records the
“resonance” or the sound(s) after the pronounced tone.
Appending notation records rhythm modifiers.

Previous work for handwritten recognition for Chinese
characters has used radical extraction as the main method. Shi
et al., [3] used active shape models to extract radicals from
Chinese characters with kernel PCA, and mapping the radicals
to the reference models using a genetic algorithm to search for
the optimal shape parameters. Chellapilla and Simard [4]
proposed a convolutional neural network using the radical-at-
location feature to process the whole character image and
recognize radicals at a specific location in the character. This
confirmed my choice of using CNN on this Guqin notation
project.

Motivated by the success of Krizhevsky et al., [1], and
several other groups in applying convolutional neural networks
to image classification, and in particular, to the ImageNet and
CaffeNet, [2] I applied deep, convolutional neural networks
(CNNs) to classifying handwritten Chinese characters of the
numbers 1 to 10 (一 二 三 四 五 六 七 八 九 十) at each of the
above specific positions. This can translate invaluable ancient
music sheet to more readable music sheets.

Figure 1. Decomposition of Guqin notation character

Figure 1 shows that the Guqin reduced character means
string #7(七) and position #5(五). We can find the
position on a Guqin as the red dot above

II. DATA

A. Image Collection
Guqin music sheets and handwritten music sheets were

read in by text detection method [5], and cropped out to an
adjusted region and saved as black and white 256*256 images.
I randomly produced (一 -十) characters in different fonts to
enlarge the training pool.

I modified the text detection method adjusting to the
average size of the characters captured on the page. A second
round of text detection was applied with Algorithm2: Radical
detection algorithm (method 1) from Enzhi.et al. [6]

mailto:pupushi@stanford.edu

B. Image Detection Method
Given an image I and a radical template T:
Let R be the range of aspect ratio, S be the range of scale.

1. For r ∈ R
 a. Change the aspect ratio of image I to r and get image I’
 b. Compute the integral graph g of image I ' .
 c. For s ∈ S
(1) Scale radical template T with s and get radical template

T ' with size w× h.
(2) For each position (x, y) at image I ' Match the image

within window (x, y, w, h) with template T', if they are
matched, add this window to radical-object-like window set W.
2. Combine neighbor radical-object-like windows in W and
output W. x, y, w, h later served as the decision boundary on
which image is the string notation or the finger position
notation.

 Figure 2 below demonstrates how the above method
worked in this project.

Figure 2. Text detection from music sheets

III. FEATURES
As mentioned above, for each black and white reduced

character image, 1-3 smaller images were collected with
position of the cropped region and saved in the file name by
text detection. Image location (x, y, w, h) was detected and
saved.

Now each single image should only contain a single unit of
digit information. 96 convolutional kernels were learned by the

first convolutional layer in the following model on the
normalized 256*256*3 input images.

IV. MODEL
After text detection, my problem simplified to deep

learning 一 -十 (1-10) in Chinese using CNN. This requires
further tuning. Applying Krizhevsky’s ImageNet network, I
built a four-layer convolutional neural network with ReLUs,
for 10 classifiers using CaffeNet CNN models.[2]

A. CaffeNet CNN Structure
CaffeNet provided a complete set of layer types including:

convolution, pooling, inner products, and nonlinearities, local
response normalization, element-wise operations, and losses
like softmax.

The first convolutional layer learned 96 convolutional
kernels from the normalized 256*256*3 input images. The
kernels of the second, third and fourth convolutional layer are
connected to those kernel maps in the previous layer. The
second convolutional layer takes as input the (response-
normalized and pooled) output of the first convolutional layer
and filters it with 256 kernels of size 5 * 5 * 48..The third
convolutional layer has 384 kernels of size 3 * 3 * 256
connected to the (normalized, pooled) outputs of the second
convolutional layer. The fourth convolutional layer has 384
kernels of size 3 * 3 * 192. The fully-connected layers have
4096 neurons each. The ReLU non-linearity is applied to the
output of every convolutional and fully-connected layer.

B. ReLU nonlinearity
A neuron’s output f as a function of its input x is f(x) = max

(0; x) as non-saturating nonlinearity model. Since the collection
of cropped image and limited music score resource, I did not
have the luxury of a big pool of data as ImageNet. I chose
nonlinearity in neuron learning to achieve a faster learning
speed.

C. Stochastic Gradient Descent
I incorporated CaffeNet’s fast and standard stochastic

gradient descent algorithm by Jia et al., [2]. The training model
was using stochastic gradient descent with a batch size of 760
examples randomly selected from 10 pools of text detected
classified images. With momentum of 0.9, I used a very small
weight delay 0.0005 suggested by the above paper [1].The
algorithm was showed as below:

vi+1 := 0.9 * vi − 0.0005* E *wi − E * < ∂L/∂w> wi

wi+1 := wi + vi+1

Where i is the iteration index, v is the momentum variable,
E is the learning rate, and < ∂L/∂w> wi is the average over the
ith batch of the derivative of the objective with respect to wi,

I initialized the weights in the first layer from a zero-mean
Gaussian distribution with standard deviation 0.01. Other
layers were dealt with by the same method. This initialization
accelerates the early stages of learning by providing the ReLUs
with positive inputs. The initial neuron biases in the remaining

layers with the constant 0. By increasing the sample sizes to
7600 and rate stopped improving with the current learning rate
0.0075 from initialized rate 0.01. It took about18 hours to
finish the training. The mini-batch size is 20 images as initial
default; it is 2 times of the number of classifiers and not too
big. I wanted the weight be updated at lease meeting one kind
out of each classifier. The size of 20 gave me a safe bet on that
also not too big to slow down each learning step.

D. Overfitting diagnosing and Dealing with Overfitting
As we know CNN could very likely lead to overfitting, I

tried randomly select training sample and adding 一 -十(1-10)
characters in different fonts to replace and dilute the existing
training sample and to disturb the homogeneity which also
served as a control and new samples here. The cross validation
kept around 95% for overall training accuracy. It worked well
as the training accuracy was stable between new mixed training
from the original set. One possibility is that for a CNN, my
data (8000 images) just were not large enough for overfitting. It
took about 18 hours to train the model for 90 folders by 20
iterations.

To completely avoid overfitting, I performed PCA with
assigned randomized variables (αi) to alter the intensities of the
RGB channels in training images where pi and ƛi are ith
eigenvector and eigenvalue of the 3 *3 covariance matrix of
RGB pixel values.

V. RESULTS
I managed to collect about 760 training images for each

classifier 一 -十 (1-10) and training errors range from (0% for
十/10 to 12.2% for 三/3). The sample size of test is pretty
small as I manually mark the correct answer for each note
which slowed down the whole process. Below shows the
average results from 10 classifiers. Accuracy rate per classifier
is listed below:

TABLE I. RESULTS FOR 10 CLASSIFIERS

Classif
ier

CNN Training and Test Results
Training
Sample

Training
Accuracy

Test
Sample

Test
Accuracy

760 98.9% 74 90.3%

762 98.0% 191 94.7%

757 87.8% 24 37.5%

756 99.7% 184 97.9%

771 93.1% 158 100.0%

757 92.3% 323 93.75%

759 94.8% 156 86.7%

763 99.7% 18 100.0%

763 91.3% 132 76.9%

759 100.0% 97 55. 6%

TABLE II. RESULTS FOR OVERALL

Classif
ier

CNN Training and Test Results
Training
Sample

Training
Accuracy

Test
Sample

Test
Accuracy

1-10
7607 95.3% 1357 89.3%

VI. DISCUSSION

The experiment results are very solid in 8 out of 10
classifiers. But 十/10 and 三/3 did not behave as good as the
other 8 groups. I did not train each model individually but
looking over the 10 categories I would suspect that 十/10 is
overfitting and 三/3 was not sufficiently trained. As I am
adopting the method of assigning randomized variable for
weight decay to reduce overfitting only, the results were
affected.

 To simplify my experiments, I did adjust the strategy to
have a two-step approach (text detection + CNN) as there was
tons of awesome work done in both fields. Adopting a simpler
CNN model also saved computational time. There was about
10% data loss between the two steps partly because they didn’t
contain 一 -十 (1-10) in the music score or these characters
were not cropped out correctly in the first step. If I was starting
from beginning again, I would allocate more time on learning
about CNN pooling window and build a neuron for position
detection in the image instead of spending much time just
focusing on cropping out the images.

Originally, I expected to tell the style differences between
the schools of Guqin playing from 2 schools of notations I
collected. It ended up that the notations do not carry enough
rhythm information and it is more up to each player to interpret
the piece. This brought up an interesting direction that we can
build a model to read in the recording and compose according
to the style of it.

VII. CONCULSION AND FUTURE WORK
I am quite excited the model did successfully recognize 一

(1) to 十 (10) with an average 10.7% test error rate. The result
differs between classifiers depending on the sample size and on
how well they were trained in the CNN. As the model applies
the same for all 10 classifiers, I might need to fine tuning.

In the future, I would implement Dropout by Hinton et al,
[8] and also enlarge the notation database. As the notation gets
more complicated, I would also add adjustment to pooling
position into CNN learning model and introduce more
notations on right hand playing techniques. There is existing
neural network demo that tries to recognize real time
handwritten character and I will try to develop the feature into
an App to assist Guqin players.

VIII. ACKNOWLEDGMENT
Thanks all the CS229 teaching staff and especially Francois

Germain for inspiring questions and comments.

REFERENCES

[1] Krizhevsky, A et al. ImageNet Classification with Deep
Convolutional Neural Networks NIPS 2012

[2] Jia et al Caffe: Convolutional Architecture for Fast
Feature Embedding Proceedings of the 22nd ACM
international conference on Multimedia, 675-678

[3] D. Shi, G. S. Ng, R. I. Damper, S. R. Gunn, Radical
recognition of handwritten Chinese characters using
GAbased kernel active shape modelling,” IEE
Proceedings of Vision, Image & Signal Processing, vol.
152(5), pp. 634-638, 2005.

[4] K. Chellapilla, P. Simard, A new radical based approach
to offline handwritten East-Asian character recognition,”
in:Proceedings of 10th International Workshop on
Frontiers in Handwriting Recognition, La Baule, France,
2006.

[5] .Chen, Huizhong, et al. Robust Text Detection in Natural
Images with Edge-Enhanced Maximally Stable Extremal
Regions." Image Processing (ICIP), 2011 18th IEEE
International Conference

[6] Enzhi,N et al. A Radical Cascade Classifier for
HandwrittenChinese Character Recognition JOCCH
Volume 3 Issue 3, March 2011

[7] Enzhi,N et al. Handwriting input system of chinese guqin
notationJOCCH Volume 3 Issue 3, March 2011

[8] E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov. Improving neu-ral networks by
preventing co-adaptation of feature detectors. CoRR,
abs/1207.0580, 2012.

http://www.cs.toronto.edu/%7Ekriz/imagenet_classification_with_deep_convolutional.pdf
http://www.cs.toronto.edu/%7Ekriz/imagenet_classification_with_deep_convolutional.pdf

	I. Introduction
	II. DATA
	A. Image Collection
	B. Image Detection Method

	III. Features
	IV. Model
	A. CaffeNet CNN Structure
	B. ReLU nonlinearity
	C. Stochastic Gradient Descent
	D. Overfitting diagnosing and Dealing with Overfitting

	V. Results
	VI. Discussion
	VII. Conculsion and Future work
	VIII. Acknowledgment
	References

