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Abstract— motivated by the Convolutional Neural 
Networks about digit recognition and ImageNet deep 
neural network by Krizhevsky et al. [1], I did this project 
on Guqin notation recognition, which classified reduced 
characters with positioned 1-10 (一 -十) in handwritten 
Chinese characters and translated to other music 
recording scores. I built a four-layer convolutional neural 
network using adjusted CaffeNet CNN [2] model to 
classify 8000 images from handwritten Guqin notations 
into 10 distinct classes. The network achieves a test set 
error rate of 15.7%. The model is trained using dropout on 
the fully-connected layers and performed PCA with 
assigned randomized variable for weight decay to reduce 
overfitting.  
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I.  INTRODUCTION  
Guqin is a plucked seven-string instrument with a very long 

history of more than 2500 years). Guqin music scores are 
written since the late Tang Dynasty in a system known as 
“Jianzi-pu (減字譜, Ch’ian Ts’u P’u in Wade-Giles, literally 
reduced ideograph notation”). The system consists of 
compiling a series of left and right hand movement syntaxes 
into one Chinese-like character 

In each of the character, there are three main categories: 
actual notation (正字, showing the string), accompaniment 
notation (旁字, showing the left-hand position) and appending 
notation (旁註, showing the right-hand movement). Actual 
notation records the “proper tones” produced by obvious 
plucking, while accompaniment notation records the 
“resonance” or the sound(s) after the pronounced tone. 
Appending notation records rhythm modifiers.  

Previous work for handwritten recognition for Chinese 
characters has used radical extraction as the main method. Shi 
et al., [3] used active shape models to extract radicals from 
Chinese characters with kernel PCA, and mapping the radicals 
to the reference models using a genetic algorithm to search for 
the optimal shape parameters. Chellapilla and Simard [4] 
proposed a convolutional neural network using the radical-at-
location feature to process the whole character image and 
recognize radicals at a specific location in the character. This 
confirmed my choice of using CNN on this Guqin notation 
project. 

Motivated by the success of Krizhevsky et al., [1], and 
several other groups in applying convolutional neural networks 
to image classification, and in particular, to the ImageNet and 
CaffeNet, [2] I applied deep, convolutional neural networks 
(CNNs) to classifying handwritten Chinese characters of the 
numbers 1 to 10 (一 二 三 四 五 六 七 八 九 十) at each of the 
above specific positions. This can translate invaluable ancient 
music sheet to more readable music sheets. 

 

Figure 1. Decomposition of Guqin notation character 

    

 
 
 
 
 

 

 

 

 

 

 

 

 

Figure 1 shows that the Guqin reduced character means 
string #7(七) and position #5(五). We can find the 
position on a Guqin as the red dot above 

II. DATA  

A. Image Collection 
Guqin music sheets and handwritten music sheets were 

read in by text detection method [5], and cropped out to an 
adjusted region and saved as black and white 256*256 images. 
I randomly produced (一 -十) characters in different fonts to 
enlarge the training pool. 

I modified the text detection method adjusting to the 
average size of the characters captured on the page. A second 
round of text detection was applied with Algorithm2: Radical 
detection algorithm (method 1) from Enzhi.et al. [6]  
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B. Image Detection Method 
Given an image I and a radical template T: 
Let R be the range of aspect ratio, S be the range of scale. 

1. For r ∈ R 
   a. Change the aspect ratio of image I to r and get image I’  
   b. Compute the integral graph g of image I ' . 
   c. For s ∈ S 
(1) Scale radical template T with s and get radical template 

T ' with size w× h. 
(2) For each position (x, y) at image I ' Match the image 

within window (x, y, w, h) with template T', if they are 
matched, add this window to radical-object-like window set W. 
2. Combine neighbor radical-object-like windows in W and 
output W. x, y, w, h later served as the decision boundary on 
which image is the string notation or the finger position 
notation. 

  Figure 2 below demonstrates how the above method 
worked in this project. 

 
Figure 2. Text detection from music sheets 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
  
 

 
 

 

III.  FEATURES 
As mentioned above, for each black and white reduced 

character image, 1-3 smaller images were collected with 
position of the cropped region and saved in the file name by 
text detection. Image location (x, y, w, h) was detected and 
saved. 

Now each single image should only contain a single unit of 
digit information. 96 convolutional kernels were learned by the 

first convolutional layer in the following model on the 
normalized 256*256*3 input images. 

IV. MODEL 
After text detection, my problem simplified to deep 

learning 一 -十 (1-10) in Chinese using CNN. This requires 
further tuning. Applying Krizhevsky’s ImageNet network, I 
built a four-layer convolutional neural network with ReLUs, 
for 10 classifiers using CaffeNet CNN models.[2] 

A. CaffeNet CNN Structure 
CaffeNet provided a complete set of layer types including: 

convolution, pooling, inner products, and nonlinearities, local 
response normalization, element-wise operations, and losses 
like softmax.  

The first convolutional layer learned 96 convolutional 
kernels from the normalized 256*256*3 input images. The 
kernels of the second, third and fourth convolutional layer are 
connected to those kernel maps in the previous layer. The 
second convolutional layer takes as input the (response-
normalized and pooled) output of the first convolutional layer 
and filters it with 256 kernels of size 5 * 5 * 48..The third 
convolutional layer has 384 kernels of size 3 * 3 * 256 
connected to the (normalized, pooled) outputs of the second 
convolutional layer. The fourth convolutional layer has 384 
kernels of size 3 * 3 * 192. The fully-connected layers have 
4096 neurons each. The ReLU non-linearity is applied to the 
output of every convolutional and fully-connected layer. 

B. ReLU nonlinearity 
A neuron’s output f as a function of its input x is f(x) = max 

(0; x) as non-saturating nonlinearity model. Since the collection 
of cropped image and limited music score resource, I did not 
have the luxury of a big pool of data as ImageNet. I chose 
nonlinearity in neuron learning to achieve a faster learning 
speed. 

C. Stochastic Gradient Descent 
I incorporated CaffeNet’s fast and standard stochastic 

gradient descent algorithm by Jia et al., [2]. The training model 
was using stochastic gradient descent with a batch size of 760 
examples randomly selected from 10 pools of text detected 
classified images. With momentum of 0.9, I used a very small 
weight delay 0.0005 suggested by the above paper [1].The 
algorithm was showed as below: 

vi+1 :=   0.9 * vi − 0.0005* E *wi − E * < ∂L/∂w> wi 
 

wi+1 :=   wi + vi+1 
 

Where i is the iteration index, v is the momentum variable, 
E is the learning rate, and < ∂L/∂w> wi is the average over the 
ith batch of the derivative of the objective with respect to wi, 

I initialized the weights in the first layer from a zero-mean 
Gaussian distribution with standard deviation 0.01. Other 
layers were dealt with by the same method. This initialization 
accelerates the early stages of learning by providing the ReLUs 
with positive inputs. The initial neuron biases in the remaining 



layers with the constant 0. By increasing the sample sizes to 
7600 and rate stopped improving with the current learning rate 
0.0075 from initialized rate 0.01. It took about18 hours to 
finish the training. The mini-batch size is 20 images as initial 
default; it is 2 times of the number of classifiers and not too 
big. I wanted the weight be updated at lease meeting one kind 
out of each classifier. The size of 20 gave me a safe bet on that 
also not too big to slow down each learning step. 

D. Overfitting diagnosing and Dealing with Overfitting 
As we know CNN could very likely lead to overfitting, I 

tried randomly select training sample and adding 一 -十(1-10) 
characters in different fonts to replace and dilute the existing 
training sample and to disturb the homogeneity which also 
served as a control and new samples here. The cross validation 
kept around 95% for overall training accuracy. It worked well 
as the training accuracy was stable between new mixed training 
from the original set. One possibility is that for a CNN, my 
data (8000 images) just were not large enough for overfitting. It 
took about 18 hours to train the model for 90 folders by 20 
iterations. 

To completely avoid overfitting, I performed PCA with 
assigned randomized variables (αi) to alter the intensities of the 
RGB channels in training images where pi and ƛi are ith 
eigenvector and eigenvalue of the 3 *3 covariance matrix of 
RGB pixel values. 

V. RESULTS 
I managed to collect about 760 training images for each 

classifier 一 -十 (1-10) and training errors range from (0% for 
十/10 to 12.2% for  三/3). The sample size of test is pretty 
small as I manually mark the correct answer for each note 
which slowed down the whole process. Below shows the 
average results from 10 classifiers. Accuracy rate per classifier 
is listed below: 

TABLE I.  RESULTS FOR 10 CLASSIFIERS 

Classif
ier 

CNN Training and Test Results 
Training 
Sample 

Training 
Accuracy 

Test 
Sample 

Test 
Accuracy 

 

760 98.9% 74 90.3% 

 
762 98.0% 191 94.7% 

 
757 87.8% 24 37.5% 

 
756 99.7% 184 97.9% 

 
771 93.1% 158 100.0% 

 
757 92.3% 323 93.75% 

 
759 94.8% 156 86.7% 

 
763 99.7% 18 100.0% 

 
763 91.3% 132 76.9% 

 
759 100.0% 97 55. 6% 

TABLE II.  RESULTS FOR OVERALL 

Classif
ier 

CNN Training and Test Results 
Training 
Sample 

Training 
Accuracy 

Test 
Sample 

Test 
Accuracy 

1-10 
7607 95.3% 1357 89.3% 

VI. DISCUSSION 
 

The experiment results are very solid in 8 out of 10 
classifiers. But 十/10 and 三/3 did not behave as good as the 
other 8 groups. I did not train each model individually but 
looking over the 10 categories I would suspect that 十/10 is 
overfitting and 三/3 was not sufficiently trained. As I am 
adopting the method of assigning randomized variable for 
weight decay to reduce overfitting only, the results were 
affected.  

 To simplify my experiments, I did adjust the strategy to 
have a two-step approach (text detection + CNN) as there was 
tons of awesome work done in both fields. Adopting a simpler 
CNN model also saved computational time. There was about 
10% data loss between the two steps partly because they didn’t 
contain 一 -十 (1-10) in the music score or these characters 
were not cropped out correctly in the first step. If I was starting 
from beginning again, I would allocate more time on learning 
about CNN pooling window and build a neuron for position 
detection in the image instead of spending much time just 
focusing on cropping out the images. 

Originally, I expected to tell the style differences between 
the schools of Guqin playing from 2 schools of notations I 
collected. It ended up that the notations do not carry enough 
rhythm information and it is more up to each player to interpret 
the piece. This brought up an interesting direction that we can 
build a model to read in the recording and compose according 
to the style of it. 

VII. CONCULSION AND FUTURE WORK 
I am quite excited the model did successfully recognize 一 

(1) to 十 (10) with an average 10.7% test error rate. The result 
differs between classifiers depending on the sample size and on 
how well they were trained in the CNN. As the model applies 
the same for all 10 classifiers, I might need to fine tuning.  

In the future, I would implement Dropout by Hinton et al, 
[8] and also enlarge the notation database. As the notation gets 
more complicated, I would also add adjustment to pooling 
position into CNN learning model and introduce more 
notations on right hand playing techniques. There is existing 
neural network demo that tries to recognize real time 
handwritten character and I will try to develop the feature into 
an App to assist Guqin players. 
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