
[General Machine Learning] Predicting Movie Popularities Using
Their Genomes

Jing Siang Ng (geraldjs) Ting An Ian Ngiaw (ianngiaw) Bili Xu (xbili)

Abstract

The 38 billion dollar movie industry has its successes and its flops. But which characteristic contributes to a movie’s
popularity? In this report, we investigate the correlation between movies’ characteristics and their popularity using supervised
learning algorithms.

1 Introduction
We used supervised learning algorithms to train models on
genome tag scores to predict movie popularity scores.

The inputs to our algorithm are the genome tag scores.
We then use regression models such as Ridge Regression,
Support Vector Regression, Random Forest Regression, and
Gradient Boosting Regression to output a predicted popu-
larity score.

We also used classification models such as Decision
Stump Boosting, SVM, Random Forests, and Gradient
Boosting Classification to predict which category a movie
belongs to i.e. popular or unpopular.

2 Dataset and Features

2.1 Movielens 20M Dataset

The genome tag score dataset was obtained from Grou-
pLens1, and is known as the MovieLens 20M dataset. A
genome tag is a single characteristic exhibited by a movie
(for example, atmospheric, thought-provoking, realistic,
etc.). Each genome tag score reflects the relevance of a tag
to a movie on a scale of 0 to 1. They were computed us-
ing a machine learning algorithm based on user-contributed
content that includes tags, ratings and textual reviews.

The movie popularity scores were obtained from The
Movie Database (TMDB) by accessing their open API. Each
popularity score is a composite score calculated by TMDB
based on unique page visitor views, number of ratings, num-
ber of times marked as favorites and number of watched list
additions on the TMDB website.

The size of dataset we are performing our research on is
10,344 movies and we randomly split them up into 3 disjoint
sets of ratio 3:1:1. Training set takes up 60% while cross-
validation and test set takes up 20% each. For optimization

1The MovieLens 20M Dataset
https://www.kaggle.com/grouplens/movielens-20m-dataset

Tags Score

animal movie 0.54475

animation 0.98575

antartica 0.0375

apocalypse 0.1435
...

...

Table 1: Genome Tag relevance score for Toy Story (1995)

Movie Score

Toy Story (1995) 3.220556

Jumanji (1995) 2.252717
...

...

Finding Nemo (2003) 4.666026
...

...

Table 2: Popularity score for movies

of each algorithm, we made use of the training and cross-
validation sets. While for comparison between algorithms,
we used optimal values from learning on training and cross-
validation sets before comparing using our test set.

2.2 Preprocessing

We preprocessed the genome tag score data by centering it
on the mean and normalizing the variance. i.e. µ = 0 and
σ2 = 1. All methods were ran on these normalized data.

1

The process is as follows:

µ =
1

m

m∑
i=1

x(i)

For each i, x(i) := x(i) − µ

For each j, σ2
j :=

1

m

m∑
i=1

(x
(i)
j)2

For each j, x(i)j :=
x
(i)
j

σj

Centering the mean ensures that attributes are treated
on the same scale, while normalizing the variance rescales
the different attributes to make them more comparable.

3 Methods
Each of the following methods was implemented using the
SciKit Learn Python package (sklearn), with the excep-
tion of Jenks Natural Breaks Optimization which was not
found in sklearn. We implemented a custom algorithm
with MATLAB and saved the classified data as a MATLAB
array, which is then loaded into Python.

3.1 Regression
Since we were predicting continuous values, a regression
model would likely yield a good prediction. Here we ap-
plied regression models found in and out of the course syl-
labus.

3.1.1 Ridge Regression

We first trained a model using unregularized ridge regres-
sion where we minimized the cost function:

J(θ) =
1

2

m∑
i=1

(
hθ(x

(i))− x(i)
)

where hθ(x(i)) = θTx(i)

We then trained a model using l2-norm regularized
ridge regression where the cost function now consists of the
regularization parameter α.

J(θ) =
1

2

m∑
i=1

(
hθ(x

(i))− x(i)
)
+ α‖θ‖22

where α > 0

3.1.2 Kernelized Ridge Regression

After obtaining undesirable results (that will be shown in
Section 3), we moved on to Kernelized Ridge Regression

with radial-basis function and polynomial kernels of degrees
2 and 3.

r.b.f. K(x, z) = exp(−γ‖x− z‖22), γ ∈ R

poly. K(x, z) = (xT z + γ)d, d ∈ {2, 3}, γ ∈ R

We chose to use Kernelized Ridge Regression as there
may be correlation between features that cannot be ex-
pressed linearly.

3.1.3 Support Vector Regression

Finally, we decided to train a Support Vector Regression
model using the same kernels specified in the previous sub-
section, minimizing the following cost function:

JC(β) = C

m∑
i=1

L(K(i)Tβ, x(i)) +
1

2
βTKβ

where L(z, y) = max(0, |y − z| − ε), ε > 0

and where K =


K(x(1), x(1)) . . . K(x(1), x(m))

K(x(2), x(1)) . . . K(x(2), x(m))
...

. . .
...

K(x(m), x(1)) . . . K(x(m), x(m))


3.1.4 Random Forests Regression

In Random Forests Regression, we first randomly select
with replacement examples from the training data set and
build a regression decision tree of a specified maximum
depth.

This is repeated for a specified number of times. The
predicted output is the average output value from each deci-
sion tree.

3.1.5 Gradient Boosting Regression

Similar to Decision Stump Boosting taught in class, the al-
gorithm uses Decision Trees instead of Decision Stumps as
weak learners.

We can then tune the number of decision trees used,
and the maximum depth of each decision tree.

3.2 Classification
We then move on to experiment with several classification
models.

3.2.1 Identifying Classes

Since movie popularity scores are continuous, we need to
first identify different classes of popularity before we pro-
ceed with developing classification models. To do so, we

2

utilize a method known as Jenks Natural Breaks Optimiza-
tion.

Algorithm 1 Jenks Natural Breaks Optimization
1: procedure JENKS(x)
2: SDAM ←

∑m
i=1(xi − µ)2

3: for i← 1 : m− 1 do
4: l← {x1 . . . xi}
5: r ← {xi+1 . . . xm}
6: µl ← 1

i

∑i
j=1(xj)

7: µr ← 1
m−i

∑m
j=i+1 xj

8: SDCM ←
∑i
j=1(xj−µl)2+

∑m
j=1(xj−µr)2

9: yi ← SDAM−SCDM
SDAM

10: end for
11: î← argmaxi yi
12: return î
13: end procedure

3.2.2 Decision Stump Boosting

The first classification algorithm we tried was Decision
Stump Boosting as taught in class. Where a decision stump
is defined as follows:

φj , s(x) = sign(xj − s) =

{
1, if xj ≥ s
−1, otherwise.

3.2.3 Support Vector Classifier

Then, we decide to train a Support Vector Classifier model
using the same kernels for regression, minimizing the fol-
lowing loss function (hinge loss):

J(θ) =

{
0, if 1− y(i)θTx(i) < 0, otherwise
1
m

∑m
i=1 log(1 + exp(−y(i)θTx(i)))

3.2.4 Random Forests Classification

This is similar to Random Forests Regression, but the leaves
of each Decision Tree are discrete class labels, rather than a
continuous value.

3.2.5 Gradient Boosting Classification

This is similar to Gradient Boosting Regression, but the
leaves of each Decision Tree are discrete class labels, rather
than a continuous value.

4 Results & Analysis
We first talk about methods taken to prevent overfitting. We
used hold-out cross-validation throughout when running all

Algorithm Kernel Error

Ridge Regression - 0.8328

RR w/ Regularization - 0.8006

Kernelized Ridge R.B.F. 0.2455

Regression Poly-2 0.2311

Poly-3 0.2303

Support Vector R.B.F 0.2825

Regression Poly-2 0.2646

Poly-3 0.2651

Random Forests
Regression

- 0.3125

Gradient Boosting
Regression

- 0.2513

Table 3: Regression algorithm performance, using mean
squared error on test set.

our learning algorithms. We tune our model parameters on
the cross-validation set and compare the performance of our
algorithms on a test set.

4.1 Regression Results

From Table 3, it is evident that Ridge Regression (with and
without regularization) are the worst performing as expected
as it assumes little or no mutlicollinearity. Ridge Regression
also assumes linear relationship between genome tag scores
and popularity but features and outputs often do not have a
linear relationship.

On the other hand, the best performing algorithm is
Kernerlized Ridge Regression is polynomial kernel of de-
gree 3.

In Figure 1, we show how the predictions of popularity
vary with increasing true popularity. The green lines show-
ing the actual popularity score from TMDB and the blue
dots indicating the predicted probability based on genome
tag scores.

For Gradient Boosting Regression, it turns out that
larger number of trees (> 700 trees) had the lowest error.
Whereas in Random Forests Regression, a relatively smaller
number of trees yielded the optimal error.

4.2 Classification Results

Before we talk about the observations from classification al-
gorithms, we will first discuss our results from Jenks Natu-

3

Figure 1: Kernelized Ridge Regression

Figure 2: Jenks Natural Break Optimization

ral Breaks Optimization. It turns out that the optimal split
point for two popularity classes is at the popularity score of
1.4405. This is illustrated in Figure 2 where we compared
the Goodness of Variance Fit of using each popularity score
in the training set as a split point.

To compare the different classification algorithms, we
use F1 score which is the harmonic mean of precision and
recall.

F1 = 2 · precision · recall
precision + recall

It turns out that Gradient Boosting Classification has
the best recall, and also has the best F1 score, maintaining
a good enough precision even with a higher recall. How-
ever, Support Vector Classification with R.B.F Kernel is able
to out-perform Gradient Boosting Classification in terms of
precision.

Algorithm F1 Score Precision Recall

Decision Stump
Boosting

0.5463 0.6571 0.4674

Support Vector
Classifier with R.B.F

Kernel
0.5152 0.8086 0.3781

Random Forests
Classifier

0.4081 0.7216 0.2846

Gradient Boosting
Classification

0.5797 0.7143 0.4878

Table 4: Classification algorithm performance, using F1
score.

Predicted

Unpopular Popular Total

Actual Unpopular 1775 48 1823

Popular 126 120 246

Total 1901 168 2069

Table 5: Confusion matrix for Gradient Boosting Trees
Classification

Comparing Random Forests and Gradient Boosting
Classification, the number of optimal number of trees is
much lower than gradient boosting. 7 trees for Random
Forests vs 400 for Gradient Boosting.

It was unexpected that Random Forests perform pretty
badly in classification, while it performs almost as well as
Support Vector Regression in regression.

5 Conclusion

The main purpose of this research is to determine a cor-
relation between movie genome tags and popularity score.
Through this research, we have achieved our goal of pre-
dicting movie scores with a good enough error rate.

It turns out that the best performing regression algo-
rithm is Kernelized Ridge Regression with Poly-3 kernel,
and the best performing classification algorithm is Gradient
Boosting Classification. Both algorithm proves that there is
little linear relationship between the genome tags and pop-
ularity score. It requires a combination of tags in order to
successfully predict a movie’s popularity.

4

6 Future Work
Given more time, we would use our research to imple-
ment a movie recommendation system that makes use of the
genome tag scores, and other possible features in the dataset
such as movie ratings, and the movie casts.

References
Harper, F., & Konstan, J. (2015). The MovieLens

Datasets: History and Context. ACM Trans-
actions on Interactive Intelligent Systems (TiiS)
5, 4, Article 19 (December 2015), 19 pages.
DOI=http://dx.doi.org/10.1145/2827872

Smola, A., & Vapnik, V. (1997). Support vector regres-
sion machines. Advances in neural information process-
ing systems, 9, 155-161. Chicago

A geospatial model of ambient sound pressure lev-
els in the contiguous United States - Scien-
tific Figure on ResearchGate. Available from:
https://www.researchgate.net/figure/278677730_fig2_Conceptual-
diagram-of-the-RANDOM-FOREST-algorithm-On-the-
left-trees-are-trained [accessed 14 Dec, 2016]

Jenks Natural Breaks Explained
https://www.ehdp.com/methods/jenks-natural-breaks-
1.htm

Scikit-learn: Machine Learning in Python, Pe-
dregosa et al., JMLR 12, pp. 2825-2830, 2011.
http://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html

5

