
1

Prediction of Earnings Based on Demographic and
Employment Data

I. INTRODUCTION

Background

The U.S. Department of Commerce launched Census Bu-
reau to gather data on the country’s earnings, employment and
demographics [1]. Its mission is to become the main source
of public data about the nation’s people and economy. The
Census data informs for instance on individual’s age, level of
education, employment type and income.

This information could be hugely significant to businesses.
For instance, think of the businesses which target individuals
with high income. These businesses could use machine learn-
ing models trained on US Census data to predict someone’s
income. If this person’s income is higher than a given threshold
(for instance $50,000 per year), then the company decides to
reach out to him. Better detection and segmentation of poten-
tial customers reduces marketing costs, increases conversion
rate and thus improves return on investment [2].

Although the US Census Data has been available for
decades, the US Census data received much traction over
the past few years/months. Some companies realized how
impactful this machine learning project could be. So data
science consultants started working on it [2]. However, it
turns out that most of these analyses were not made on the
raw US Census Data Set. Instead, most relevant past work
had been conducted on an extremely simplified version of the
Census Data Set: the Adult Data Set.

Goals

I was amazed to discover that real-world machine learning
models, meant to inform business decisions, were based on
a crazily simplified version of the data! Instead of using the
raw US Census Data Set, companies used the much simpler
Adult Data Set [3]. In the Adult Data Set, most features have
been deleted (16 features instead of 41). This undermines the
US Adult Data Set ability to grasp trends and insights. Also,
training examples have been ridiculously decreased (30,000
examples instead of 300,000). And the binary target variable
(whether or not people earn more than $50,000 per year)
has been artificially balanced (75%/25% imbalance instead of
94%/6%)! As a result, the Adult Data Set is extremely simple
to work with. But this simplification might have come at the
cost of losing some valuable information along the way.

Working on the raw US Census Data Set - instead of
the Adult Data Set - requires to handle more features, more
training examples and to deal with extremely imbalanced
classes. But this effort might lead to better performing machine
learning models, that grasp more trends and insights in the

data.
Therefore, my goal is to use several machine learning

models to make predictions about individuals’ annual income,
based on the raw US Census Data Set (demographic and
employment variables).

This novel data set will require new approaches, especially
to deal with the extremely imbalanced classes. If it turns out
that my model performs better than previous models (that were
trained on the simplified US Adult Data Set), then my novel
project will be very significant to many businesses.

II. DATA PRE-PROCESSING

Data

The raw US Census Dataset is a public dataset containing 41
employment/demographics variables for 300,000 individuals.
I chose to focus on the raw 1994-1995 Census Data Set,
because most of the relevant past work had been done on the
simplified 1994-1995 US Adult Data Set: by working on the
raw 1994-1995 Census Data Set, I will be able to compare
my results to the previous simplified models.

The target

I tackled the following binary classification problem: based
on the 41 employment/demographics variables of the US
Census Data Set, how well can I predict if someone earns
more than $50,000/year? In order to convert the raw data to
useful features, I went through a series of pre-preprocessing
steps.

From Qualitative Data to Quantitative Data

In the US Census dataset, 34 of the 41 attributes are
qualitative. They contain a lot of information. However,
most implementations of machine learning models cannot
handle qualitative data. So the first step was to convert all
non-numerical/categorical data to numerical data. This was
done in two ways:
- label encoding: categorical variables that take n different
values are converted into one quantitative variable taking
values 1...n. This is computationally efficient since only one
feature is created. But it introduces an order in the data that
might not make sense in the real world. For instance, the
country of birth of each individual (string) is replaced by a
number from 1 to 182 (182 countries appear in the dataset)
- dummy (one-hot) encoding: categorical variables that take
n different values are converted into n-1 indicator variables
(one indicator variable per value). If n is large, this can

2

increase considerably the number of features. However,
contrarily to label encoding, it does not introduce any kind
of bias in the data. Note that I created n-1 (instead of n)
dummy variables in order to avoid the dummy variable trap
[4]. For instance, I converted the variable indicating marital
status (married, divorced, separated, widowed, single) into 4
indicator variables.

Standard Pre-Processing

I then deleted the meaningless features - with 0 variance -
since they offer no predictive power. The missing values were
converted to aberrant values. And I normalized all the data to
have mean 0 and standard deviation 1. Additionally, the target
variable was turned into a proper binary (0/1) variable.

Note that I could have opted for alternative strategies
to handle missing data [5]. For instance, replacing missing
values by the mean or the most common value. Predicting
missing values. Or simply use classifiers/implementations that
can handle missing values.

Covariate Shift in Train/Test Split?

The training set consists of 200,000 examples. The remainder
(100,000 examples) is for testing. The first key step was to
make sure that there was no covariate shift in the data. Most
supervised learning models make the assumption that training
and test data follow the same underlying distribution. However,
this assumption might turn out to be wrong and undermine
many models. I designed the following experiment to detect a
potential covariate shift.

I added to the training and test data a train/test variable
indicating whether they came from the train or test data set. I
then built a model trying to predict this train/test variable. If
there were a covariate shift, then this classifier should be able
to distinguish the train data from the test data.

The accuracy of this classifier was 66.6%. This corresponds
to the baseline (66.6% of the data was training data). There-
fore, I can confidently affirm that there was no covariate shift
in the data.

III. FEATURE ENGINEERING

Computing New Features

Based on the raw (pre-processed) variables of the data set,
I computed basic features that will help the classifiers. For
instance, I defined the net capital as the difference between
capital gains and capital losses. This increased the number of
features to 221. To judge the quality of feature engineering, I
could look at the ranking of the top features of my classifiers:
the net capital - a feature I engineered - ranked 3rd out of
221. Success!

Feature Selection

The previous steps increased the number of features from 41
to 221. This enriched the raw dataset. But it considerably

increased computation time, especially for complex models.
And too many features may lead to overfitting. I therefore
implemented feature selection to decrease the number of
input features. To keep only the most performant features, I
ran sequential backward-based feature elimination. Features
were selected based on their mean-squared ROC AUC
score using 3-fold cross-validation. Feature selection was
terminated when this performance metric starts decreasing.
This procedure led to the conclusion that the optimal number
of features to keep was 171.

Fig. 1. Evolution of the performance of the model with the number of
features

Impact of Feature Engineering

It is in general a good idea to start with a simple model that
does not need much tuning - for instance a Random Forest
with 30 estimators - while doing feature engineering. They
are easy to implement and able to handle large amounts of
variables, so they give valuable feedback on the quality of our
work. Looking at the performance of the same random forest
at each step of feature engineering enables us to quantify
the improvements brought by each of these steps. Feature
engineering increased our Random Forest’s precision/recall
from 0.70/0.35 to 0.72/0.39! Here are the top 5 features
yielded after feature engineering and their relative importance.

Rank Feature Importance of the feature (%)

1 Age 0.10
2 Dividends from stocks 0.07
3 Net capital 0.06
4 Occupation code 0.06
5 Industry code 0.05

Note that among the top 10 features, 5 were not present
in (or could not be engineering from) the Adult Data Set:
dividends from stocks, detailed occupation recode, detailed
industry recode, number of persons worked for, industry of
work code and number of weeks worked in year. This is a
great news for the pertinence and novelty of my project. It

3

Fig. 2. Relative importance of the top 10 features

appears that by looking at the full 41 raw variables of the US
Census Data Set instead of the simplified version of the Adult
Data Set, we are able to grasp more patterns in the data.

IV. FIGHTING IMBALANCED CLASSES

The greatest difficulty of the project lied in the extremely
imbalanced classes. The target variable is binary. It is equal
to 0 for 94% of the data. This forced me to implement the
following methods to fight the imbalance. This difficulty
distinguishes my project (on the raw US Census Data Set)
from previous existing project (on the simplified Adult Data
Set where imbalance was not as bad)

Fig. 3. Imbalanced classes

Choosing Appropriate Metrics

When classes are that much imbalanced, it is crucial to
choose well the metric that tracks the performance of our
classifiers. Especially, the accuracy metric is not relevant,
because the accuracy baseline is 94%! Instead, I evaluated my
classifiers based on their precision, recall, confusion matrices
and ROC curves.

Choosing an Appropriate Cross-validation Strat-
egy

Cross-validation can raise several issues when classes are
extremely imbalanced. Indeed, there are relatively few
training examples that belong to the class ”1” of the target
variable (labeled as ”1”). So, if I choose the cross-validations
folds randomly, the training examples labeled as ”1” might
all end up in the same cross-validation fold. The other folds
would be left with almost no no training example from the
class ”1” of the target variable. Classifiers would struggle to
learn the class ”1” on these folds. Therefore, I used stratified
3-Fold cross-validation to make sure that, in each fold, the
proportion of 0/1 target variable is identical to that of the
training set.

Introducing Class Weights

When classifiers allow it, I penalized the most frequent
class, by weighting each class inversely proportional to its
frequency. For instance, with the logistic regression classifier,
this increased ROC AUC by 0.13!

V. PREDICTION MODELS AND METHODOLOGY

In order to match the interest of companies, I formulated
my learning task as the following binary classification:
given the features than came from pre-processing/feature
engineering, I would like to predict whether each individual
has an income higher than $50,000 (the threshold $50,000
might vary from company to company).

Logistic Regression

Logistic regression is a natural choice as a first model. I
ran logistic regression on the training and test set with L2
regularization. This baseline scored 0.72 ROC AUC (area
under the TPR/FPP curve). I then opted for L1 regularization.
When L2 regularization tended to give all the features diffuse
importance, L1 regularization tended to shrink the importance
of most of the features to 0, letting the classification rely
mostly on a few number of features. More importantly, L1
regularization increased training time by 10x longer for com-
parable performance.

So I opted for L2 regularization and fine-tuned the pa-
rameter that controls regularization strength C. I ran 3-fold
cross-validation with values of C in the [0.01, 104] interval
and chose the value of C that maximize the mean-squared
ROC AUC cv score. This procedure found that C = 10 is the
optimal regularization parameter. Note that, as expected, the
performance of the classifier has a bell shape: when C is too
low, the model is unable to grasp relevant patterns in the data
(underfitting) and performance are low. And when C is too
high, the performance tends to overfit and not generalize well,
so performances are low too.

Note that, as mentioned in the rubric Fighting Class Imbal-
ance, the best logistic regression model on the test set used
class weights to fight class imbalance (0.13 of ROC AUC!).

4

Fig. 4. Evolution of the ROC AUC (y axis) of the logistic regression with
parameter C (x axis)

Having fine-tuned my logistic regression, in order to further
improve the performance of my classifier, I decided to switch
to tree-based classifiers. They might grasp relationships
between the features and the target variable that a logistic
regression could not perceive.

Random Forests

To capture patterns in the data that logistic regression might
fail to detect, I opted for a model radically different from
logistic regression. Random forests are meta-estimators that
fit a given number of decision tree classifiers on various sub-
samples of the dataset. Fine tuning random forest was made
in 2 steps.

First, fine-tune the parameter that controls the number of
estimators (the number of decision trees). It turned out that
ROC AUC kept increasing with the number of estimators. So,
my role was to find a tradeoff between computation time and
performance. I decided to set the number of estimators to 100:
after 100 trees, adding new trees increases the performance of
the model, but extremely slowly.

Second, random forests fit decision tree classifiers based on
random sub-samples of the features. I fine-tuned the parameter
(maxfeatures) controlling the size of this subsample. Setting
this parameter to 20% of the whole features turned out to
be optimal. This does slightly better than the heuristic [6] that
recommends setting maxfeature to the root of the total number
of features - 13% in our case.

VI. RESULTS AND DISCUSSION

The following figure shows the performances of my fine-
tuned models. The primary error metric is the precision-recall
curve: Logistic Regression and Random Forest seem to have
comparable performances based on this metric. The curve
might even suggest that Random Forest slightly outperform
Logistic Regression.

However, looking at a second performance metric will help
us understand much better the dynamics of the two models and
compare them: the ROC curve. Each point of the ROC curve

Fig. 5. Evolution of the ROC AUC (y axis) of the random forest with the
parameter maxfeatures (x axis)

Fig. 6. Precision-recall curves of the Logistic Regression and Random Forests

corresponds to a classification decision threshold. By default,
this threshold is set to 0.5. In other words, for a given test
example, if Pr(targetvariableequals1) is higher than 0.5,
then the classifier will output 1. Setting this threshold closer
to 1 improves precision, setting it closer to 0 improves recall. I
decided to set the classification decision threshold to the point
of the ROC curve that is closer to the top-right corner.

Finally, the area under the ROC curve leaves no doubt about
the best model for our classification tast: Logistic Regression
scores a ROC AUC of 0.84 when Random Forest scores ROC
AUC of 0.76. Figure 7 is the ROC curve of the Logistic
Regression, once fine-tuned and once it includes class weights.

VII. ENSEMBLE LEARNING

In order to leverage the strengths of our fine-tuned classifiers
(Logistic Regression and Random Forest), I opted for an en-
semble learning method. A grid-searched Logistic Regression
combined the predictions of the individual models (fine tuned
Logistic Regression and Random Forest) and leveraged their
strengths.

5

Fig. 7. ROC AUC of the fine-tuned logistic regression

The result was slightly disappointing: it improved our
ROC AUC 0.841 to 0.845. Theoretically, ensemble learning
methods should be able to perform much better than individual
classifiers. Therefore, I see two avenues to further increase the
performances of the model:
- adding new models to the stacking that will bring new
insights (for instance discriminant analysis models, Neural
Networks that are universal approximators)
- changing the metamodel that performs the ensemble learning.
The current version uses a Logistic Regression as a meta-
model. With more computation time/power, we could replace it
by a more complex model (for instance the tree-based boosting
classifier XGBoost)

Note: Ensemble learning methods like stacking require a
validation set: I split the training set (200,000 examples)
between a working set (150,000) and a validation set (50,000).

VIII. CONCLUSION

This elegant solution - based on rich pre-processing, feature
engineering, optimization of individual classifiers and ensem-
ble learning enabled us to increase the ROC AUC from 0.62
to 0.845. This challenging project led me to implement novel
methods to deal extremely with imbalanced classes. Previous
model that were trained on simplified versions of the data
Census Data Set (the Adult Data Set) reached ROC AUC
of 0.81. The novel improvement could be highly significant
for the businesses mentioned in the introduction. It came at
the expense of handling more features, more examples and
extreme class imbalance, which made the project challenging.

REFERENCES

[1] U.S. Census Bureau https://www.commerce.gov/doc/us-census-bureau.
[2] Predicting earning potential on Adult Dataset http://www.

dataminingmasters.com/uploads/studentProjects/Earning potential
report.pdf

[3] Adult Data Set http://archive.ics.uci.edu/ml/datasets/Adult
[4] Dummy variable trap in regression models http://www.algosome.com/

articles/dummy-variable-trap-regression.html
[5] How to tune RF parameters in practice https://www.kaggle.com/forums/

f/15/kaggle-forum/t/4092/how-to-tune-rf-parameters-in-practice

[6] Classification and association rules for census income data
https://mathematicaforprediction.wordpress.com/2014/03/30/
classification-and-association-rules-for-census-income-data/

[7] Learning Fair Classifiers https://arxiv.org/pdf/1507.05259.pdf
[8] Ballpark Learning: Estimating Labels from Rough Group Comparisons

http://www.hyadatalab.com/papers/shahaf-hope-pkdd16.pdf

