GoGoGo: Improving Deep Neural Network Based Go Playing Al with

Residual Networks

Xingyu Liu

xyl@stanford.edu

1. Introduction

The game of Go has a long history and has been viewed
as the most challanging classical game due to the enormous
amount of possible moves and the lack of precise evaula-
tion tools. AlphaGo [13], a Go-playing Al built by Google
DeepMind, used a new approach of combining deep neural
networks with tree search to solve the Go playing problem.
It narrows down the search space by introducing ’policy
network” that gives reasonable moves instead of all possi-
ble moves. It then combine the Monte Carlo tree search
(MCTS) with a “value network™ that evaluates the win-
ning chance of current state to search deeply for the future
moves. In a game with the 18-time Go world champion win-
ner Lee Sedol by 4 games to 1. This is the first time that an
artificial intelligence program defeated the Go world cham-
pion.

LT}

However, the “’policy network” and “value network”
used by AlphaGo are vanilla convolutional neural networks
consisting of stacks of convoluation layers. The winner
of 2015 ImageNet competition has shown that deep resid-
ual networks might be a better choice of image classifica-
tion problem [12]. We assume that in the task of predic-

th)

tion and regression of “policy network” and “value net-
work”, deep residual network might also win. To train
the skills learned in this course, including deep neural net-
works, search algorithms and reinforcement learning, we
decided to reimplement a similar Go playing Al, GoGoGo,
that uses deep residual networks instead of vanilla convolu-
ational networks, as the course project. We used Ing Chang-

ki rule [3] for the game.

2. Related Work

Zen [8] is a Go playing engine developed by Yoji Ojima.
It won a gold medal in 14th Computer Olympiad in May
2009 and the Computer Go UEC Cup in 2011, 2014, and
2016. Pachi [6] by Petr Baudis and Fuego [1] by University
of Alberta is a Go program using Monte Carlo.

With the success of AlphaGo, Go Al was recently pow-
ered by using deep learning algorithms and was improved
significantly. Zen was improved to be "DeepZenGo” by us-
ing deep learning algorithms. It had three games against
against Cho Chikun 9d and won one of them. Darkforest
[15], the Go AI developed by FAIR, also used deep learn-
ing algorithms.

3. Methodology
3.1. Training data Collection and Processing

We used similar approach of training data collection and
processing as in AlphaGo. We used existing Kifu [4] by
professional human Go player. We have collected over
65000 Kifu from StoneBase software dataset [7]. Each Kifu
consisting more 150 moves on average, which will provide
a massive training set. However, the Kifus only records the
position of each move. We need to explicitly expand each
Kifu we collected into a series of four-channel feature map,
whose total number equals to the number of moves in the
Kifu.

We wrote our own program based on Bensen’s Algo-
rithm [10] to eliminate dead stones at each step. The
Bensen’s Algorithm also generates the positions that is not
allowed to be placed on (due to Ko fight [5] for example).
This is important in the subsequent playing stage where for-
bidden positions are eliminated from the board. Given the



moves, we generated state-action pairs and stored them.

The Kifus also recorded the result of the game. Like Al-
phaGo, we didn’t pay attention to the margin of winning,
since the games are held under different rules. For each
of the over 65000 Kifus, we generate more than 150 four-
channel feature maps on average together with the boolean
variable indicating the result of the game and stored them
as hdf5 files so that it can be accessed efficiently from disk.
We generated 13915316 images in total. We split the train-
ing data into two parts: training and validation dataset. The
validation data set include randomly selected 700000 im-
ages.

3.2. Convolutional Neural Network Architecture

Inspired by the implementation of AlphaGo [13], We de-
cided that the policy network and value network should be
the same architecture except for the very last layer where
the policy network output a 19 x 19 score map and value
network output a single value. The reason we use the same
architecture is that if one of the network architecture is suf-
ficient to extract useful information from the existing game
state, changing only the last layer would still be able to ex-
tract sufficient information.

The network architecture of the policy network and value
network is illustrated in Figure. 1. Since we used Ing-Cup
rule, the game state is only related to the position of stones
but not related to the number of stones captured. The input
now only consists of 4 channels of feature maps instead of
48: 3 channels represent the position of black and white
stones and 1 channel indicate whether white or black should
do the next move. The specification of input data is listed in
Table. 1.

Table 1. Input description

# of o
Description
Planes
Stone color 3 Black / White / Empty
Player Playing 1 Black player is playing

Illegal Move 1 The move is illegal

The networks have totally 17 layers. Each of the layers
in the network has 64 output channels. AlphaGo used fewer
numbers of layers (13) and thicker layers in their networks
(128-256). The reason we chose more and thinner layers is
that for both the efficiency consideration as well as explor-

Input I | Input

| output |
(@ (0)

Figure 1. The architecture of the convolutional neural network

used in this project: (a) policy network, (b) value network

ing new network architecture reason.

The last layer of value network is an FC layer with a sin-
gle output, which is different from the policy network. Each
layer in both network is followed by a ReLU layer that is not



shown in the figure. A basic problem with residual network
is whether the element-wise summation with bypassed layer
occur before ReLU layer or after ReLU layer. As pointed
out by Szegedy et. al [14], putting ReLU layer after the
element-wise summation is a better choice. So we follow
this approach.

3.3. Policy Network Supervised Training

In the first stage of the training pipeline, the data de-
scribed in Section 3.1 are used to train the policy network
described in Section 3.2. During supervised training, when
given the parameters o, current state of the game s and hu-
man player action from the training data a, we would like to
maximize p,(a | s). We used the stochastic gradient ascent
to maximize the above possibility. That is

Oty1 =0t + - vo(pa(a | 5))

We implemented the supervised training using Tensor-
Flow [9]. The reason we chose this framework is that Ten-
sorFlow has good python interface and it can be integrated
with other program logics more easily.

We trained tried several parameters during the training.
The current settings we used are with constant step size of
a = 0.003 and softmax temperature of 5 = 0.67, both
following the parameter suggested in AlphaGo nature paper
[13]. We used two NVIDIA TITAN X GPU and trained for
two days. The training accuracy can reach 36%, however,
the testing accuracy is less than 26%. This may be due to
not enough training or due to the ordering of training data
not being shuffled. One of the reasons that the training is
slow is that Tensorflow is slow on GPUs. However, there’s
nothing we could do about it.

3.4. Policy Network Reinforcement Learning

The second stage of the training pipeline is the Rein-
forcement Learning (RL) of the policy network from the
supervised learning model. Denote the terminal time step
to be 7', the reward function of a game state at time ¢ is
r(s¢) = +1 for winning and r(s;) = —1 for losing. The
training set of this stage is the game records we generated
by ourselves through letting the current policy network play
against other randomly selected previous iteration of the
policy network. The weights are updated at each time step
by stochastic gradient ascent:

Pt+1 = pt + - r(sr) - Vp(pp(a | 5))

3.5. Value Network Reinforcement Learning

The final stage of the training pipeline is the reinforce-
ment training of value network. Value network has a similar
architecture as the policy network, but the last layer is an FC
layer and produces a single number indicating the winning
probability given the input of current game status. The value

network with weight € is trained using the formula below:

Orp1 = 0r +a - (2 —vg(st)) - V(ve(se))

3.6. Monte Carlo Tree Search

We also implemented Monte Carlo Tree Search (MCTS)
framework in Python based on the literature [11] and the
course lecture.

Given a state s;, an action a; is selected from s; in the

following way:

a; = arg m(?X(Q(st, a) + u(st, a))

P(s,a)
1+ N(s,a)
The P(s,a) and N(s,a) are obtained from MCTS simu-

lation. In ith simulation, we denote 1(s,a,%) as the sign

where the utility u(s¢,a) is proportional to

function indicating whether the edge (s,a) was traversed.
Then we have:

n

N(s,a) = Z 1(s,a,1)

i=1

IR N
Nes.a) Z 1(s,a,i)v(s%)

i=1

Q(S,CL) =

3.7. Graphics User Interface

Since the GUI is only used to facilitate our debugging
and improve the final user experience, we don’t want to
spend much time on it. We took used the existing code us-
ing Qt in python on github by nhnifong [2] and seamlessly

integrated it into our own program.

3.8. System Optimization

Storing all kifus by human players on disk takes huge
space. We proposed and used a dynamic kifu expansion



o 9395 D @ e T 9
000000 209 e e
92 29.3).2) 00 - a9t T
I 9.9 QO Quw I wu i
1 9 QP DD Q20 D | 20O
Lo 200 20y Q00 @ D590 000
MRy 2@V © 20000 0@ © @ 929
- B39998 9909910000 @ @2
22580 9T @@ om0 | | | 9099 0
29O N D)9 IDD OO = O
s e ?29968 @
278) 10¢ 1 56) 58, 74,
= @ ©02:009 @
e > 9@ 99 9@ Q=
w5 ©Q0:s 999000909 Q¢
a9 9P )+ @99 OO 9 9D 9D 299 Q9
 FEARIRIC IS L PEEE L F :
92) 50)GE 2 1252 [ I 21 216)sY) 2371249 90,
200 900> olesl 1305.8¢ &

(b)

(©

Figure 2. Three kifus of supervised-trained policy network play against itself

mechanism. It takes two numbers representing the position
of the next played stone and dynamically generate the input
which contains the board state and other information. When
dynamically expanding the kifu, the forbidden position can
also be obtained.

We used a two-level batch training method. First we se-
lect a batch (1,000) of kifus, dynamically expanding each
of them into board states associated with moves. Second,
we randomly shuffle the board-move pairs ( 200,000) so
that training data from different kifus can overlap to prevent
overfitting.

4. Experiment Result

Due to the limit of computation resource and time, we
only completed the supervised training of policy network.
The reinforcement learning of policy network and value net-
work is still ongoing. We let the existing pre-RL policy net-
work play against Pachi [6], it didn’t win a single game. It
shows that both the RL of policy network and value network
is necessary to ensure stronger Al.

In supervised training of the policy network, the training
accuracy can reach 31%, the validation accuracy can reach
36%. The training loss of supervised learning is illustrated

in Fig. 3.

5. Future Work

Then we will generate massive amount of Kifus by using
GoGoGo to play against itself. The generated Kifu will be
used in the reinforcement learning of the policy network and

Supervised Learning Training Loss

o s N w & w @ N

Figure 3. The training loss of supervised learning of policy net-
work

the value network. The training framework will be imple-
mented so that the generating of Kifus and the learning from
Kifus can be done automatically by the learning framework.

We will invite some non-professional but strong Go
player at Stanford to test its strength. The challenge are:
1) the time spent on the training of two networks is huge;
2) the number of self-generated Kifus is huge and needs a
lot of space to store. Topics in the course including rein-
forcement learning, neural networks, Monte Carlo will be
used.

If time allowed, we will upload our Al onto online Go
playing platforms to test its strength. We expect it to be at
least as strong as past hand-crafted Go Al

References
[1] Fuego. https://fuego.sourceforge.net/.
[2] GoGoGo. "https://github.com/nhnifong/GoGoGo™.

[3] Ing Cup. https://en.wikipedia.org/wiki/Ing_Cup”.



[4] Kifu Wikipedia. https://en.wikipedia.org/wiki/Kifu. [14] Christian Szegedy, Sergey loffe, and Vincent Van-

[5] Ko fight. "https://en.wikipedia.org/wiki/Ko_fight”.

[6] Pachi - Board Game of Go / Weiqi / Baduk.
https://pachi.or.cz/.

[7] StoneBase software.

http://senseis.xmp.net/?StoneBase.
[8] Zen (software). https://en.wikipedia.org/wiki/Zen_(software).

[9] Martn Abadi, Ashish Agarwal, Paul Barham, Eugene
Brevdo, Zhifeng Chen, Craig Citro, Greg Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay
Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey
Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz,
Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg,
Dan Man, Rajat Monga, Sherry Moore, Derek Murray,
Chris Olah, Mike Schuster, Jonathon Shlens, Benoit
Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker,
Vincent Vanhoucke, Vijay Vasudevan, Fernanda Vi-
gas, Oriol Vinyals, Pete Warden, Martin Wattenberg,
Martin Wicke, Yuan Yu, and Xiaogiang Zheng. Ten-
sorflow: Large-scale machine learning on heteroge-

neous distributed systems, 2015.

[10] David B Benson. Life in the game of go. Information
Sciences, 10(1):17-29, 1976.

[11] Rémi Coulom. Efficient selectivity and backup op-
erators in monte-carlo tree search. In Proceedings
of the 5th International Conference on Computers
and Games, CG’06, pages 72-83, Berlin, Heidelberg,
2007. Springer-Verlag.

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition.
CoRR, abs/1512.03385, 2015.

[13] David Silver, Aja Huang, Christopher J. Maddison,
Arthur Guez, Laurent Sifre, George van den Driess-
che, Julian Schrittwieser, loannis Antonoglou, Veda
Panneershelvam, Marc Lanctot, Sander Dieleman,
Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya
Sutskever, Timothy Lillicrap, Madeleine Leach, Ko-
ray Kavukcuoglu, Thore Graepel, and Demis Hass-
abis. Mastering the game of go with deep neural net-
works and tree search. Nature, 529:484-503, 2016.

houcke. Inception-v4, inception-resnet and the im-
pact of residual connections on learning. CoRR,
abs/1602.07261, 2016.

[15] Yuandong Tian and Yan Zhu. Better computer go

player with neural network and long-term prediction.
arXiv preprint arXiv:1511.06410, 2015.



