League of Legends Match Outcome Prediction

Lucas Lin!

Abstract— We use gradient boosted trees and gradient
boosted trees with logistic regression to predict the match
outcomes of the popular online multiplayer game, League
of Legends. Features are extracted from the data that Riot
Games API exposes—including champions picked for the
game, player role information, and mastery levels for
the players’ champions (pre-game knowledge) as well
as in-game player statistics. One-hot encoding is used
to transform this mostly categorical data of pre-game
knowledge into a feature vector that is used in the
machine learning algorithms. We find that using only pre-
match knowledge (champions, masteries, roles, spells)
from the very start is only a weak predictor of match
outcome but using in-game statistics, the model becomes
a strong predictor.

I. INTRODUCTION

League of Legends is a multiplayer online battle
arena (MOBA) game developed by Riot Games where
players participate with four teammates in head-to-
head matches and the goal is to destroy the opposing
teams nexus. Each player in a match—usually lasting
between twenty minutes and an hour—controls a unique
champion chosen from a pool of more than a hundred
with differing characteristics and abilities. The game
boasts 100 million monthly players and a flourishing
competitive scene with millions in tournament prize
pools as well as online viewers. With such a large com-
munity behind League of Legends, predicting match
outcomes for casual players and tournament games
alike would be interesting and valuable to players and
fans. Such a system would also provide insight into
particular features that are influential in swaying win
probability.

A. Game Overview

In a standard League of Legends match, two teams
of five players each face off on a map called the
Summoner’s Rift. Each player has a choice of playing
one of 133 champions for the duration of a single match
as well as customizing their initial stats and abilities

L. Lin is an undergraduate in the Computer Science Depart-
ment, Stanford University, 450 Serra Mall, Stanford, California
lucaslin at stanford.edu

by choosing two summoner spells (out of ten) and
selecting sets of “masteries” and runes which effec-
tively cause various increases to stats like more health
regeneration or bonus characteristics such as moving
faster when attacking an enemy. A typical game also
sees the division of players on single team into distinct
roles that they play throughout the game—for example,
we would typically see a player be a “support” who
spends the game trying to keep their teammates alive
or trap enemies for their allies to attack. Other roles
include the “carries”—players who are supposed to do
the most damage and ”jungle”—players who spend most
of the beginning of the game leveling up by being in
the jungle area of the map and also periodically helps
the other teammates.

B. Related Work

As League of Legends is a popular game, there are
already a couple of applications that exist in the data
analysis sphere. Websites like League of Graphs and
MetaSrc collect basic stats and information from the
League of Legends API and use it to construct simple
analyses like what the most popular champion and what
the win rate of two champions when played together
are. What these existing applications do not currently
do is prediction of a currently ongoing game with all
of the features of that game in mind, and that is the
hole that this project is attempting to fill.

II. DATA COLLECTION

Riot Games provides a public API endpoint to access
nearly all kinds of data that would be available to
see in the official game client including match history,
champion mastery levels, and more. We use Cassiopeia,
a Python wrapper for the Riot Games API, to access
the data.

A. Match Data

The API endpoint gives access to match data which
includes the champions selected and the roles of the
players playing in the match. To obtain our set of
matches that will become the training and test sets, we
first seed an initial queue with players from a random

Gold league (referring to the skill rating of Gold). Then,
we iterate through every player in the queue, storing
matches that we have not seen yet that occurred after
the most recent game update as well as adding players
in that match to the queue that we have not seen before.

B. Player Data

In addition to the data about matches, the Riot Games
API also exposes the “mastery points” of players with
regard to their champions. This value more or less
corresponds to the amount of time that a player has
played a certain champion weighted by how well the
player does on that champion. We store the mastery
points of each player in a given match with regards to
the champion they play during that match to be used
as a potential feature later.

III. METHODOLOGY
A. Feature Selection

Currently, the pre-match information that we store
about consists of

e Champion picked for a given role on each team
o Summoner spells picked for a given role on each
team
e Mastery points of each player for the champion
they are playing

e The winner of the match

Using one-hot encoding, we can transform the first
two items above—which are categorical variables—as
a series of binary indicator values. For example, to
represent the champion that is picked for support as
a series of indicator values, we have 133 variables
corresponding to the support role being a different
champion. There are five roles per team and two
teams, so in total there will be 133 * 5 x 2 = 1330
features stemming from the first item. Similarly, for
the summoner spells picked, we know there are 10
spells and players may not pick the same spell, meaning
there are 90 possible summoner spell combinations.
This would mean that the number of features stemming
from this would be 90 x 10 = 900. In total, we have a
feature vector of length 1330 + 900 + 1 = 2231. For
the in-game knowledge, can extract and calculate from
each match statistics like

o Total damage dealt per player

« Difference in gold between two players in a single
lane

e Gold spread within a team through mean and
standard deviations

« Kills to deaths ratio

o Obtained first kill of the game or not

e Other similar statistics

Since these statistics are all numerical and/or
boolean, we can construct the feature vector for this
set of information in a straightfoward manner, with the
boolean statistics being represented as a 0 or 1. The
template for this feature vector in Python code is as

follows

{
Individual Statistics
"[stat_name]_[side]_[LANE]_[ROLE]":
"assists_red TOP_SOLO": 10

[Value]

Group Statistics
"[stat_name]_[side]": [Value]

"gold_standard_deviation_blue": 1434

Lastly, we label each match as follows

1
@ _ b
) {0’

B. Models

Using the feature vectors and labels extracted from
the matches, we then use various supervised learning
models to see if we can predict the outcome of the
matches

1) Gradient Boosted Trees: We first look at gradient
boosted trees because of several characteristics that
make it suitable for the type of data that we are using.
First, tree ensembles do not expect linear features and
handle binary classification well because the method
is using combinations of decision trees. Furthermore,
boosting makes the algorithm a good fit for handling the
high dimensional space we have as well as the expected
large number of training examples.

The gradient boosting method attempts to an approx-
imation to a function minimize the expected value of
some loss function

argming E, [L(y, F(z))]

if the blue team won

if the red team won

where L(y, F'(x)) is the loss function and F'(z) is the
prediction of the model that is in the form

and h)(x) are functions in some hypothesis class of
weak learners [1].

We use the tree boosting algorithm that Jerome
H. Friedman derived from gradient boosting. In this
method, at the ith iteration step, the hypothesis func-
tions h()(x) are decision trees and with .J being the
number of leaves, the h(!)(z) tree splits the input space

into J regions that we can identify as R§i) where
7 identifies the jth region [1]. The update rule for
Friedman’s gradient boosted trees is

J
FO@) = FOD @) + 30 00 @)l € 7))
j=1

'yj(.i) = arg min Z L(yg, F(i_l)(xk:) + ’Yh(i)(xk:))
K mkGREi)

which we use in Python to generate the model.

2) Gradient Boosted Trees with Logistic Regression:
We also attempt to see whether or not our data can
be predicted through a linear model after it has been
transformed by the ensemble of trees from gradient
boosting. We fit the trees on the training set and
then assign each leaf an arbitrary feature index in a
new feature space which are encoded using one-hot
encoding. The transformed data is then run through
logistic regression.

IV. RESULTS

We obtained the training and test data sets by scrap-
ing the match lists of Gold league (middle-ranked)
League of Legends players and then using the Riot API
to gather the information required. Since the pre-match
data includes mastery level of champions which needs
to be looked up for each unique player/champion pair,
the number of samples in the pre-match data sets were
comparatively less than that of the in-game set due to
Riot API rate limiting.

Table 1 below shows the results of training and
testing the gradient boosted trees (GBT) and gradient
boosted trees with logistic regression (GBT+LR) algo-
rithms on both the pre-match and in-game data sets.

TABLE I
TRAIN AND TEST ERRORS OF THE MODELS

Model Train Error | Test Error
Pre-Match GBT 0.0 0.433
Pre-Match GBT+LR 0.0153 0.448
In-Game GBT 0.0 0.0608
In-Game GBT+LR 0.0 0.0642

As we can see, there does not seem to be a compa-
rable difference in train/test error between the gradient
boosted trees algorithm and the gradient boosted trees

with logistic regression algorithm for either the pre-
match or the in-game data sets. However, comparing
between the pre-match and in-game feature representa-
tions, we see that the predictive ability of the in-game
model is much higher than that of the pre-match model.

This is further supplemented with Figures 1-3 below
which show the receiver operating curves of the models.

ROC curve

— GBT 2
— GBT+LR

1.0

0.8

o
o

I
IS
N

True positive rate
\

0.2 -

0.0 0.2 0.4 0.6 0.8 10
False positive rate

Fig. 1. Receiver operating characteristic curves for two models
using pre-match knowledge—gradient boosted trees (GBT) and
gradient boosted trees with logistic regression (GBT+LR)-using a
training sample size of 196 and a test sample size of the 392.

10 i ROC curve ‘

0.8 .

o
=y

14
IS
N

True positive rate
N

0.2 -
.

- — GBT
7 — GBT + LR

0.0 0.2 0.4 0.6 0.8 10
False positive rate

Fig. 2. Receiver operating characteristic curves for two models us-
ing in-game knowledge—gradient boosted trees (GBT) and gradient
boosted trees with logistic regression (GBT+LR)—using a training
sample size of 1000 and a test sample size of the 2000.

ROC curve (zoomed in at top left)

— GBT
— GBT + LR

1.00

0.95

0.90

True positive rate

0.85

0.80
0.00 0.05 0.10 0.15 0.20

False positive rate

Fig. 3. A zoomed in version of Figure 3.

V. DISCUSSION

We can see from the results that the algorithms
being used with the pre-match information feature
representation is only giving a prediction that is slightly
better than random guessing. Furthermore the large
discrepancy in the train and test errors of this specific
model is indicative of over-fitting of the data. Of course,
since boosting is generally more effective with a large
sample size, it may be possible that the over-fitting is
reduced and the test error reduced when more data is
available.

On the other hand, the in-game feature representation
model showed high predictive ability compared to the
pre-match features. This is somewhat expected because
the game itself contains information that should be
correlating with who wins or loses the match.

VI. FUTURE WORK

In the future, it would be interesting to develop
a finer sense of how accurate the prediction system
becomes given the amount of data at a certain point
in a match. In other words, how much more accurate
would the prediction becomes if data extracted from
the first X minutes of each match is used as part of the
feature vector as compared to the first Y minutes as
well as how the accuracy changes with respect to X.

Furthermore, the overfitting in the pre-match data
could potentially be dealt with by modifying the way
the champion selection is used as a feature as it
currently accounts for 1330 of the features in the pre-
match feature vector.

VII. CONCLUSION

This project demonstrates that using pre-match and
in-game data, it is possible to predict the outcome

of a League of Legends match with varying levels
of success. We find that using the gradient boosted
trees (with or without logistic regression) and a feature
vector based on in-game knowledge gave us around a
95% success rate on prediction.

ACKNOWLEDGMENT

I would like to thank Professors Andrew Ng and
John Duchi for teaching the foundational material that
allowed me to work on this project as well as my
TA, Michael Zhu, for giving me feedback and tips for
improving my model/project.

REFERENCES

[1] J. H. Friedman, ”Greedy function approximation: a gradient
boosting machine.” Annals of statistics, 2001, pp. 1189-1232.

